RESUMEN
UNLABELLED: Learning and memory impairments are common in traumatic brain injury (TBI) survivors. However, there are no effective treatments to improve TBI-induced learning and memory impairments. TBI results in decreased cAMP signaling and reduced cAMP-response-element binding protein (CREB) activation, a critical pathway involved in learning and memory. TBI also acutely upregulates phosphodiesterase 4B2 (PDE4B2), which terminates cAMP signaling by hydrolyzing cAMP. We hypothesized that a subtype-selective PDE4B inhibitor could reverse the learning deficits induced by TBI. To test this hypothesis, adult male Sprague-Dawley rats received sham surgery or moderate parasagittal fluid-percussion brain injury. At 3 months postsurgery, animals were administered a selective PDE4B inhibitor or vehicle before cue and contextual fear conditioning, water maze training and a spatial working memory task. Treatment with the PDE4B inhibitor significantly reversed the TBI-induced deficits in cue and contextual fear conditioning and water maze retention. To further understand the underlying mechanisms of these memory impairments, we examined hippocampal long-term potentiation (LTP). TBI resulted in a significant reduction in basal synaptic transmission and impaired expression of LTP. Treatment with the PDE4B inhibitor significantly reduced the deficits in basal synaptic transmission and rescued LTP expression. The PDE4B inhibitor reduced tumor necrosis factor-α levels and increased phosphorylated CREB levels after TBI, suggesting that this drug inhibited molecular pathways in the brain known to be regulated by PDE4B. These results suggest that a subtype-selective PDE4B inhibitor is a potential therapeutic to reverse chronic learning and memory dysfunction and deficits in hippocampal synaptic plasticity following TBI. SIGNIFICANCE STATEMENT: Currently, there are an estimated 3.2-5.3 million individuals living with disabilities from traumatic brain injury (TBI) in the United States, and 8 of 10 of these individuals report cognitive disabilities (Thurman et al., 1999; Lew et al., 2006; Zaloshnja et al., 2008). One of the molecular mechanisms associated with chronic cognitive disabilities is impaired cAMP signaling in the hippocampus. In this study, we report that a selective phosphodiesterase 4B (PDE4B) inhibitor reduces chronic cognitive deficits after TBI and rescues deficits in hippocampal long-term potentiation. These results suggest that PDE4B inhibition has the potential to improve learning and memory ability and overall functioning for people living with TBI.
Asunto(s)
Lesiones Traumáticas del Encéfalo/complicaciones , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/etiología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Inhibidores de Fosfodiesterasa 4/uso terapéutico , Animales , Condicionamiento Clásico/efectos de los fármacos , Modelos Animales de Enfermedad , Miedo/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Interleucina-1beta/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria a Corto Plazo/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Fenilacetatos/farmacología , Fenilacetatos/uso terapéutico , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción/efectos de los fármacos , Tiofenos/farmacología , Tiofenos/uso terapéutico , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
The neurocognitive impairments associated with mild traumatic brain injury (TBI) often resolve within 1-2 weeks; however, a subset of people exhibit persistent cognitive dysfunction for weeks to months after injury. The factors that contribute to these persistent deficits are unknown. One potential risk factor for worsened outcome after TBI is a history of stress experienced by a person early in life. Early life stress (ELS) includes maltreatment such as neglect, and interferes with the normal construction of cortical and hippocampal circuits. We hypothesized that a history of ELS contributes to persistent learning and memory dysfunction following a TBI. To explore this interaction, we modeled ELS by separating Sprague Dawley pups from their nursing mothers from post-natal days 2-14 for 3 h daily. At 2 months of age, male rats received sham surgery or mild to moderate parasagittal fluid-percussion brain injury. We found that the combination of ELS with TBI in adulthood impaired hippocampal-dependent learning, as assessed with contextual fear conditioning, the water maze task, and spatial working memory. Cortical atrophy was significantly exacerbated in TBI animals exposed to ELS compared with normal-reared TBI animals. Changes in corticosterone in response to restraint stress were prolonged in TBI animals that received ELS compared with TBI animals that were normally reared or sham animals that received ELS. Our findings indicate that ELS is a risk factor for worsened outcome after TBI, and results in persistent learning and memory deficits, worsened cortical pathology, and an exacerbation of the hormonal stress response.