Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33509925

RESUMEN

Plant cell walls are complex structures subject to dynamic remodeling in response to developmental and environmental cues and play essential functions in disease resistance responses. We tested the specific contribution of plant cell walls to immunity by determining the susceptibility of a set of Arabidopsis cell wall mutants (cwm) to pathogens with different parasitic styles: a vascular bacterium, a necrotrophic fungus, and a biotrophic oomycete. Remarkably, most cwm mutants tested (29/34; 85.3%) showed alterations in their resistance responses to at least one of these pathogens in comparison to wild-type plants, illustrating the relevance of wall composition in determining disease-resistance phenotypes. We found that the enhanced resistance of cwm plants to the necrotrophic and vascular pathogens negatively impacted cwm fitness traits, such as biomass and seed yield. Enhanced resistance of cwm plants is not only mediated by canonical immune pathways, like those modulated by phytohormones or microbe-associated molecular patterns, which are not deregulated in the cwm tested. Pectin-enriched wall fractions isolated from cwm plants triggered immune responses in wild-type plants, suggesting that wall-mediated defensive pathways might contribute to cwm resistance. Cell walls of cwm plants show a high diversity of composition alterations as revealed by glycome profiling that detect specific wall carbohydrate moieties. Mathematical analysis of glycome profiling data identified correlations between the amounts of specific wall carbohydrate moieties and disease resistance phenotypes of cwm plants. These data support the relevant and specific function of plant wall composition in plant immune response modulation and in balancing disease resistance/development trade-offs.


Asunto(s)
Arabidopsis/citología , Arabidopsis/inmunología , Pared Celular/metabolismo , Resistencia a la Enfermedad , Enfermedades de las Plantas/inmunología , Arabidopsis/genética , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Fenotipo , Enfermedades de las Plantas/genética , Espectroscopía Infrarroja por Transformada de Fourier
2.
Plant J ; 63(3): 469-83, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20497379

RESUMEN

By combining Zinnia elegans in vitro tracheary element genomics with reverse genetics in Arabidopsis, we have identified a new upstream component of secondary wall formation in xylary and interfascicular fibers. Walls are thin 1 (WAT1), an Arabidopsis thaliana homolog of Medicago truncatula NODULIN 21 (MtN21), encodes a plant-specific, predicted integral membrane protein, and is a member of the plant drug/metabolite exporter (P-DME) family (transporter classification number: TC 2.A.7.3). Although WAT1 is ubiquitously expressed throughout the plant, its expression is preferentially associated with vascular tissues, including developing xylem vessels and fibers. WAT1:GFP fusion protein analysis demonstrated that WAT1 is localized to the tonoplast. Analysis of wat1 mutants revealed two cell wall-related phenotypes in stems: a defect in cell elongation, resulting in a dwarfed habit and little to no secondary cell walls in fibers. Secondary walls of vessel elements were unaffected by the mutation. The secondary wall phenotype was supported by comparative transcriptomic and metabolomic analyses of wat1 and wild-type stems, as many transcripts and metabolites involved in secondary wall formation were reduced in abundance. Unexpectedly, these experiments also revealed a modification in tryptophan (Trp) and auxin metabolism that might contribute to the wat1 phenotype. Together, our data demonstrate an essential role for the WAT1 tonoplast protein in the control of secondary cell wall formation in fibers.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Pared Celular , Medicago truncatula/genética , Proteínas de Transporte de Membrana/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Genes de Plantas , Proteínas de Transporte de Membrana/genética , Datos de Secuencia Molecular
3.
Plant J ; 44(2): 271-89, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16212606

RESUMEN

By screening a T-DNA population of Arabidopsis mutants for alterations in inflorescence stem vasculature, we have isolated a mutant with a dramatic increase in vascular tissue development, characterized by a continuous ring of xylem/phloem. This phenotype is the consequence of premature and numerous cambial cell divisions in both the fascicular and interfascicular regions that result in the loss of the alternate vascular bundle/fiber organization typically observed in Arabidopsis stems. The mutant was therefore designated high cambial activity (hca). The hca mutation also resulted in pleiotropic effects including stunting and a delay in developmental events such as flowering and senescence. The physiological characterization of hca seedlings in vitro revealed an altered auxin and cytokinin response and, most strikingly, an enhanced sensitivity to cytokinin. These results were substantiated by comparative microarray analysis between hca and wild-type plants. The genetic analysis of hca indicated that the mutant phenotype was not tagged by the T-DNA and that the hca mutation segregated as a single recessive locus, mapping to the long arm of chromosome 4. We propose that hca is involved in mechanisms controlling the arrangement of vascular bundles throughout the plant by regulating the auxin-cytokinin sensitivity of vascular cambial cells. Thus, the hca mutant is a useful model for examining the genetic and hormonal control of cambial growth and differentiation.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/anatomía & histología , Arabidopsis/genética , Mutación/genética , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Citocininas/farmacología , ADN Bacteriano/genética , Proteínas de Homeodominio/metabolismo , Ácidos Indolacéticos/farmacología , Morfogénesis , Fenotipo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética , Raíces de Plantas/anatomía & histología , Raíces de Plantas/genética , Tallos de la Planta/anatomía & histología , Tallos de la Planta/genética , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA