Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Cell ; 82(14): 2588-2603.e9, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35588748

RESUMEN

Sex differences are pervasive in human health and disease. One major key to sex-biased differences lies in the sex chromosomes. Although the functions of the X chromosome proteins are well appreciated, how they compare with their Y chromosome homologs remains elusive. Herein, using ensemble and single-molecule techniques, we report that the sex chromosome-encoded RNA helicases DDX3X and DDX3Y are distinct in their propensities for liquid-liquid phase separation (LLPS), dissolution, and translation repression. We demonstrate that the N-terminal intrinsically disordered region of DDX3Y more strongly promotes LLPS than the corresponding region of DDX3X and that the weaker ATPase activity of DDX3Y, compared with DDX3X, contributes to the slower disassembly dynamics of DDX3Y-positive condensates. Interestingly, DDX3Y-dependent LLPS represses mRNA translation and enhances aggregation of FUS more strongly than DDX3X-dependent LLPS. Our study provides a platform for future comparisons of sex chromosome-encoded protein homologs, providing insights into sex differences in RNA metabolism and human disease.


Asunto(s)
ARN Helicasas DEAD-box , ARN Helicasas , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Femenino , Humanos , Masculino , Antígenos de Histocompatibilidad Menor/metabolismo , Biosíntesis de Proteínas , Proteínas/metabolismo , ARN/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo
2.
Methods Mol Biol ; 2661: 217-232, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37166640

RESUMEN

Mitochondria maintain their own translational machinery that is responsible for the synthesis of essential components of the oxidative phosphorylation system. The mammalian mitochondrial translation system differs significantly from its cytosolic and bacterial counterparts. Here, we describe detailed protocols for efficient in vitro reconstitution of the mammalian mitochondrial translation initiation complex, which can be further used for mechanistic analyses of different aspects of mitochondrial translation.


Asunto(s)
Mitocondrias , Biosíntesis de Proteínas , Animales , Mitocondrias/genética , Mitocondrias/metabolismo , Fosforilación Oxidativa , Procesamiento Proteico-Postraduccional , Citosol/metabolismo , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/metabolismo , Mamíferos/metabolismo
3.
Nat Commun ; 13(1): 2413, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35523781

RESUMEN

Genetic diseases are often caused by nonsense mutations, but only one TRID (translation readthrough inducing drug), ataluren, has been approved for clinical use. Ataluren inhibits release factor complex (RFC) termination activity, while not affecting productive binding of near-cognate ternary complex (TC, aa-tRNA.eEF1A.GTP). Here we use photoaffinity labeling to identify two sites of ataluren binding within rRNA, proximal to the decoding center (DC) and the peptidyl transfer center (PTC) of the ribosome, which are directly responsible for ataluren inhibition of termination activity. A third site, within the RFC, has as yet unclear functional consequences. Using single molecule and ensemble fluorescence assays we also demonstrate that termination proceeds via rapid RFC-dependent hydrolysis of peptidyl-tRNA followed by slow release of peptide and tRNA from the ribosome. Ataluren is an apparent competitive inhibitor of productive RFC binding, acting at or before the hydrolysis step. We propose that designing more potent TRIDs which retain ataluren's low toxicity should target areas of the RFC binding site proximal to the DC and PTC which do not overlap the TC binding site.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas , Oxadiazoles/farmacología , Factores de Terminación de Péptidos/metabolismo , ARN de Transferencia/metabolismo , Ribosomas/metabolismo
4.
J Vis Exp ; (139)2018 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-30272673

RESUMEN

Accurate transcription is required for the faithful expression of genetic information. Surprisingly though, little is known about the mechanisms that control the fidelity of transcription. To fill this gap in scientific knowledge, we recently optimized the circle-sequencing assay to detect transcription errors throughout the transcriptome of Saccharomyces cerevisiae, Drosophila melanogaster, and Caenorhabditis elegans. This protocol will provide researchers with a powerful new tool to map the landscape of transcription errors in eukaryotic cells so that the mechanisms that control the fidelity of transcription can be elucidated in unprecedented detail.


Asunto(s)
Células Eucariotas/metabolismo , Genómica/métodos , Animales , Transcriptoma
5.
Cell Rep ; 22(12): 3115-3125, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29562168

RESUMEN

Genetic instability of the mitochondrial genome (mtDNA) plays an important role in human aging and disease. Thus far, it has proven difficult to develop successful treatment strategies for diseases that are caused by mtDNA instability. To address this issue, we developed a model of mtDNA disease in the nematode C. elegans, an animal model that can rapidly be screened for genes and biological pathways that reduce mitochondrial pathology. These worms recapitulate all the major hallmarks of mtDNA disease in humans, including increased mtDNA instability, loss of respiration, reduced neuromuscular function, and a shortened lifespan. We found that these phenotypes could be rescued by intervening in numerous biological pathways, including IGF-1/insulin signaling, mitophagy, and the mitochondrial unfolded protein response, suggesting that it may be possible to ameliorate mtDNA disease through multiple molecular mechanisms.


Asunto(s)
Caenorhabditis elegans/metabolismo , ADN Mitocondrial/genética , Mitocondrias/metabolismo , Animales , Progresión de la Enfermedad , Ratones , Modelos Animales
6.
Sci Adv ; 3(10): e1701484, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29062891

RESUMEN

Accurate transcription is required for the faithful expression of genetic information. To understand the molecular mechanisms that control the fidelity of transcription, we used novel sequencing technology to provide the first comprehensive analysis of the fidelity of transcription in eukaryotic cells. Our results demonstrate that transcription errors can occur in any gene, at any location, and affect every aspect of protein structure and function. In addition, we show that multiple proteins safeguard the fidelity of transcription and provide evidence suggesting that errors that evade these layers of RNA quality control profoundly affect the physiology of living cells. Together, these observations demonstrate that there is an inherent limit to the faithful expression of the genome and suggest that the impact of mutagenesis on cellular health and fitness is substantially greater than currently appreciated.


Asunto(s)
Células Eucariotas/metabolismo , Mutagénesis , Transcripción Genética , Regiones no Traducidas 3' , Biología Computacional/métodos , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Perfilación de la Expresión Génica , Mutación , Tasa de Mutación , Degradación de ARNm Mediada por Codón sin Sentido , Subunidades de Proteína , Transcriptoma , Levaduras/genética , Levaduras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA