Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Proteome Res ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38318665

RESUMEN

Many metabolomic studies are interested in both polar and nonpolar analyses. However, the available sample volume often precludes multiple separate extractions. Therefore, there are major advantages in performing a biphasic extraction and retaining both phases for subsequent separate analyses. To be successful, such approaches require the method to be robust and repeatable for both phases. Hence, we determined the performance of three extraction protocols, plus two variant versions, using 25 µL of commercially available mouse plasma. The preferred option for nonpolar lipids was a modified diluted version of a method employing methyl tert-butyl ether (MTBE) suggested by Matyash and colleagues due to its high repeatability for nonpolar compounds. For polar compounds, the Bligh-Dyer method performs best for sensitivity but with consequentially poorer lipid performance. Overall, the scaled-down version of the MTBE method gave the best overall performance, with high sensitivity for both polar and nonpolar compounds and good repeatability for polar compounds in particular.

2.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36674708

RESUMEN

Periods of low energy supply are challenging conditions for organisms and cells during fasting or famine. Although changes in nutrient levels in the blood are first sensed by endothelial cells, studies on their metabolic adaptations to diminished energy supply are lacking. We analyzed the dynamic metabolic activity of human umbilical vein endothelial cells (HUVECs) in basal conditions and after serum starvation. Metabolites of glycolysis, the tricarboxylic acid (TCA) cycle, and the glycerol pathway showed lower levels after serum starvation, whereas amino acids had increased levels. A metabolic flux analysis with 13C-glucose or 13C-glutamine labeling for different time points reached a plateau phase of incorporation after 30 h for 13C-glucose and after 8 h for 13C-glutamine under both experimental conditions. Notably, we observed a faster label incorporation for both 13C-glucose and 13C-glutamine after serum starvation. In the linear range of label incorporation after 3 h, we found a significantly faster incorporation of central carbon metabolites after serum starvation compared to the basal state. These findings may indicate that endothelial cells develop increased metabolic activity to cope with energy deficiency. Physiologically, it can be a prerequisite for endothelial cells to form new blood vessels under unfavorable conditions during the process of angiogenesis in vivo.


Asunto(s)
Glutamina , Inanición , Humanos , Glutamina/metabolismo , Aminoácidos/metabolismo , Glucólisis , Glucosa/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo
3.
Mol Syst Biol ; 13(5): 928, 2017 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-28468958

RESUMEN

The RAF-MEK-ERK signalling pathway controls fundamental, often opposing cellular processes such as proliferation and apoptosis. Signal duration has been identified to play a decisive role in these cell fate decisions. However, it remains unclear how the different early and late responding gene expression modules can discriminate short and long signals. We obtained both protein phosphorylation and gene expression time course data from HEK293 cells carrying an inducible construct of the proto-oncogene RAF By mathematical modelling, we identified a new gene expression module of immediate-late genes (ILGs) distinct in gene expression dynamics and function. We find that mRNA longevity enables these ILGs to respond late and thus translate ERK signal duration into response amplitude. Despite their late response, their GC-rich promoter structure suggested and metabolic labelling with 4SU confirmed that transcription of ILGs is induced immediately. A comparative analysis shows that the principle of duration decoding is conserved in PC12 cells and MCF7 cells, two paradigm cell systems for ERK signal duration. Altogether, our findings suggest that ILGs function as a gene expression module to decode ERK signal duration.


Asunto(s)
Regulación de la Expresión Génica , Sistema de Señalización de MAP Quinasas/genética , ARN Mensajero/metabolismo , Animales , Simulación por Computador , Secuencia Rica en GC , Células HEK293 , Semivida , Humanos , Células MCF-7 , Modelos Teóricos , Familia de Multigenes , Células PC12 , Regiones Promotoras Genéticas , Proto-Oncogenes Mas , Ratas , Transducción de Señal/genética , Quinasas raf/genética
4.
Bioinformatics ; 31(16): 2705-12, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25900918

RESUMEN

MOTIVATION: Impedance-based technologies are advancing methods for measuring proliferation of adherent cell cultures non-invasively and in real time. The analysis of the resulting data has so far been hampered by inappropriate computational methods and the lack of systematic data to evaluate the characteristics of the assay. RESULTS: We used a commercially available system for impedance-based growth measurement (xCELLigence) and compared the reported cell index with data from microscopy. We found that the measured signal correlates linearly with the cell number throughout the time of an experiment with sufficient accuracy in subconfluent cell cultures. The resulting growth curves for various colon cancer cells could be well described with the empirical Richards growth model, which allows for extracting quantitative parameters (such as characteristic cycle times). We found that frequently used readouts like the cell index at a specific time or the area under the growth curve cannot be used to faithfully characterize growth inhibition. We propose to calculate the average growth rate of selected time intervals to accurately estimate time-dependent IC50 values of drugs from growth curves. CONTACT: nils.bluethgen@charite.de SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Bioensayo/métodos , Células/citología , Adhesión Celular , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Impedancia Eléctrica , Humanos , Concentración 50 Inhibidora , Modelos Biológicos , Bibliotecas de Moléculas Pequeñas/farmacología , Factores de Tiempo
5.
Mol Syst Biol ; 9: 673, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23752269

RESUMEN

The epidermal growth factor receptor (EGFR) signaling network is activated in most solid tumors, and small-molecule drugs targeting this network are increasingly available. However, often only specific combinations of inhibitors are effective. Therefore, the prediction of potent combinatorial treatments is a major challenge in targeted cancer therapy. In this study, we demonstrate how a model-based evaluation of signaling data can assist in finding the most suitable treatment combination. We generated a perturbation data set by monitoring the response of RAS/PI3K signaling to combined stimulations and inhibitions in a panel of colorectal cancer cell lines, which we analyzed using mathematical models. We detected that a negative feedback involving EGFR mediates strong cross talk from ERK to AKT. Consequently, when inhibiting MAPK, AKT activity is increased in an EGFR-dependent manner. Using the model, we predict that in contrast to single inhibition, combined inactivation of MEK and EGFR could inactivate both endpoints of RAS, ERK and AKT. We further could demonstrate that this combination blocked cell growth in BRAF- as well as KRAS-mutated tumor cells, which we confirmed using a xenograft model.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Receptores ErbB/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Modelos Genéticos , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Ensayos de Selección de Medicamentos Antitumorales , Quimioterapia Combinada , Receptores ErbB/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Ratones , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Mapas de Interacción de Proteínas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Trasplante Heterólogo , Carga Tumoral/efectos de los fármacos , Proteínas ras/genética , Proteínas ras/metabolismo
6.
Biomaterials ; 309: 122614, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38788455

RESUMEN

The extracellular matrix is known to impact cell function during regeneration by modulating growth factor signaling. However, how the mechanical properties and structure of biomaterials can be used to optimize the cellular response to growth factors is widely neglected. Here, we engineered a macroporous biomaterial to study cellular signaling in environments that mimic the mechanical stiffness but also the mechanical heterogeneity of native extracellular matrix. We found that the mechanical interaction of cells with the heterogeneous and non-linear deformation properties of soft matrices (E < 5 kPa) enhances BMP-2 growth factor signaling with high relevance for tissue regeneration. In contrast, this effect is absent in homogeneous hydrogels that are often used to study cell responses to mechanical cues. Live cell imaging and in silico finite element modeling further revealed that a subpopulation of highly active, fast migrating cells is responsible for most of the material deformation, while a second, less active population experiences this deformation as an extrinsic mechanical stimulation. At an overall low cell density, the active cell population dominates the process, suggesting that it plays a particularly important role in early tissue healing scenarios where cells invade tissue defects or implanted biomaterials. Taken together, our findings demonstrate that the mechanical heterogeneity of the natural extracellular matrix environment plays an important role in triggering regeneration by endogenously acting growth factors. This suggests the inclusion of such mechanical complexity as a design parameter in future biomaterials, in addition to established parameters such as mechanical stiffness and stress relaxation.


Asunto(s)
Materiales Biocompatibles , Proteína Morfogenética Ósea 2 , Matriz Extracelular , Hidrogeles , Transducción de Señal , Proteína Morfogenética Ósea 2/metabolismo , Materiales Biocompatibles/química , Humanos , Matriz Extracelular/metabolismo , Hidrogeles/química , Animales , Ratones , Movimiento Celular
7.
Cardiovasc Res ; 119(18): 2902-2916, 2024 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-37842925

RESUMEN

AIMS: Mutation of the PRDM16 gene causes human dilated and non-compaction cardiomyopathy. The PRDM16 protein is a transcriptional regulator that affects cardiac development via Tbx5 and Hand1, thus regulating myocardial structure. The biallelic inactivation of Prdm16 induces severe cardiac dysfunction with post-natal lethality and hypertrophy in mice. The early pathological events that occur upon Prdm16 inactivation have not been explored. METHODS AND RESULTS: This study performed in-depth pathophysiological and molecular analyses of male and female Prdm16csp1/wt mice that carry systemic, monoallelic Prdm16 gene inactivation. We systematically assessed early molecular changes through transcriptomics, proteomics, and metabolomics. Kinetic modelling of cardiac metabolism was performed in silico with CARDIOKIN. Prdm16csp1/wt mice are viable up to 8 months, develop hypoplastic hearts, and diminished systolic performance that is more pronounced in female mice. Prdm16csp1/wt cardiac tissue of both sexes showed reductions in metabolites associated with amino acid as well as glycerol metabolism, glycolysis, and the tricarboxylic acid cycle. Prdm16csp1/wt cardiac tissue revealed diminished glutathione (GSH) and increased inosine monophosphate (IMP) levels indicating oxidative stress and a dysregulated energetics, respectively. An accumulation of triacylglycerides exclusively in male Prdm16csp1/wt hearts suggests a sex-specific metabolic adaptation. Metabolic modelling using CARDIOKIN identified a reduction in fatty acid utilization in males as well as lower glucose utilization in female Prdm16csp1/wt cardiac tissue. On the level of transcripts and protein expression, Prdm16csp1/wt hearts demonstrate an up-regulation of pyridine nucleotide-disulphide oxidoreductase domain 2 (Pyroxd2) and the transcriptional regulator pre-B-cell leukaemia transcription factor interacting protein 1 (Pbxip1). The strongest concordant transcriptional up-regulation was detected for Prdm16 itself, probably through an autoregulatory mechanism. CONCLUSIONS: Monoallelic, global Prdm16 mutation diminishes cardiac performance in Prdm16csp1/wt mice. Metabolic alterations and transcriptional dysregulation in Prdm16csp1/wt affect cardiac tissue. Female Prdm16csp1/wt mice develop a more pronounced phenotype, indicating sexual dimorphism at this early pathological window. This study suggests that metabolic dysregulation is an early event in the PRDM16 associated cardiac pathology.


Asunto(s)
Cardiomiopatías , Corazón , Animales , Femenino , Masculino , Ratones , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Mutación , Miocardio/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Caracteres Sexuales
8.
Front Cardiovasc Med ; 11: 1247472, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38361581

RESUMEN

Objective: Cold-inducible RNA binding Protein (CIRBP) has been shown to be a potent inflammatory mediator and could serve as a novel biomarker for inflammation. Systemic inflammatory response syndrome (SIRS) and capillary leak syndrome (CLS) are frequent complications after pediatric cardiac surgery increasing morbidity, therefore early diagnosis and therapy is crucial. As CIRBP serum levels have not been analyzed in a pediatric population, we conducted a clinical feasibility establishing a customized magnetic bead panel analyzing CIRBP in pediatric patients undergoing cardiac surgery. Methods: A prospective hypothesis generating observational clinical study was conducted at the German Heart Center Berlin during a period of 9 months starting in May 2020 (DRKS00020885, https://drks.de/search/de/trial/DRKS00020885). Serum samples were obtained before the cardiac operation, upon arrival at the pediatric intensive care unit, 6 and 24 h after the operation in patients up to 18 years of age with congenital heart disease (CHD). Customized multiplex magnetic bead-based immunoassay panels were developed to analyze CIRBP, Interleukin-1ß (IL-1ß), Interleukin-6 (IL-6), Interleukin-8 (IL-8), Interleukin-10 (IL-10), Monocyte chemotactic protein 1 (MCP-1), Syndecan-1 (SDC-1), Thrombomodulin (TM), Vascular endothelial growth factor (VEGF-A), Angiopoietin-2 (Ang-2), and Fibroblast growth factor 23 (FGF-23) in 25 µl serum using the Luminex MagPix® system. Results: 19 patients representing a broad range of CHD (10 male patients, median age 2 years, 9 female patients, median age 3 years) were included in the feasibility study. CIRBP was detectable in the whole patient cohort. Relative to individual baseline values, CIRBP concentrations increased 6 h after operation and returned to baseline levels over time. IL-6, IL-8, IL-10, and MCP-1 concentrations were significantly increased after operation and except for MCP-1 concentrations stayed upregulated over time. SDC-1, TM, Ang-2, as well as FGF-23 concentrations were also significantly increased, whereas VEGF-A concentration was significantly decreased after surgery. Discussion: Using customized magnetic bead panels, we were able to detect CIRBP in a minimal serum volume (25 µl) in all enrolled patients. To our knowledge this is the first clinical study to assess CIRBP serum concentrations in a pediatric population.

9.
Cancer Discov ; 14(3): 492-507, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38197697

RESUMEN

DNA amplifications in cancer do not only harbor oncogenes. We sought to determine whether passenger coamplifications could create collateral therapeutic vulnerabilities. Through an analysis of >3,000 cancer genomes followed by the interrogation of CRISPR-Cas9 loss-of-function screens across >700 cancer cell lines, we determined that passenger coamplifications are accompanied by distinct dependency profiles. In a proof-of-principle study, we demonstrate that the coamplification of the bona fide passenger gene DEAD-Box Helicase 1 (DDX1) creates an increased dependency on the mTOR pathway. Interaction proteomics identified tricarboxylic acid (TCA) cycle components as previously unrecognized DDX1 interaction partners. Live-cell metabolomics highlighted that this interaction could impair TCA activity, which in turn resulted in enhanced mTORC1 activity. Consequently, genetic and pharmacologic disruption of mTORC1 resulted in pronounced cell death in vitro and in vivo. Thus, structurally linked coamplification of a passenger gene and an oncogene can result in collateral vulnerabilities. SIGNIFICANCE: We demonstrate that coamplification of passenger genes, which were largely neglected in cancer biology in the past, can create distinct cancer dependencies. Because passenger coamplifications are frequent in cancer, this principle has the potential to expand target discovery in oncology. This article is featured in Selected Articles from This Issue, p. 384.


Asunto(s)
Neoplasias , Oncogenes , Humanos , Neoplasias/genética , Oncología Médica , Muerte Celular , Diana Mecanicista del Complejo 1 de la Rapamicina/genética
10.
Nat Commun ; 15(1): 2788, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555356

RESUMEN

Hospital-acquired pneumonia (HAP) is associated with high mortality and costs, and frequently caused by multidrug-resistant (MDR) bacteria. Although prior antimicrobial therapy is a major risk factor for HAP, the underlying mechanism remains incompletely understood. Here, we demonstrate that antibiotic therapy in hospitalized patients is associated with decreased diversity of the gut microbiome and depletion of short-chain fatty acid (SCFA) producers. Infection experiments with mice transplanted with patient fecal material reveal that these antibiotic-induced microbiota perturbations impair pulmonary defense against MDR Klebsiella pneumoniae. This is dependent on inflammatory monocytes (IMs), whose fatty acid receptor (FFAR)2/3-controlled and phagolysosome-dependent antibacterial activity is compromized in mice transplanted with antibiotic-associated patient microbiota. Collectively, we characterize how clinically relevant antibiotics affect antimicrobial defense in the context of human microbiota, and reveal a critical impairment of IM´s antimicrobial activity. Our study provides additional arguments for the rational use of antibiotics and offers mechanistic insights for the development of novel prophylactic strategies to protect high-risk patients from HAP.


Asunto(s)
Antibacterianos , Antiinfecciosos , Humanos , Ratones , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Monocitos , Antiinfecciosos/farmacología , Klebsiella pneumoniae , Pulmón
12.
Dis Model Mech ; 16(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37990867

RESUMEN

Neurofibromatosis type 1 (NF1) is an autosomal dominant condition caused by germline mutations in the neurofibromin 1 (NF1) gene. Children with NF1 are prone to the development of multiple nervous system abnormalities, including autism and brain tumors, which could reflect the effect of NF1 mutation on microglia function. Using heterozygous Nf1-mutant mice, we previously demonstrated that impaired purinergic signaling underlies deficits in microglia process extension and phagocytosis in situ. To determine whether these abnormalities are also observed in human microglia in the setting of NF1, we leveraged an engineered isogenic series of human induced pluripotent stem cells to generate human microglia-like (hiMGL) cells heterozygous for three different NF1 gene mutations found in patients with NF1. Whereas all NF1-mutant and isogenic control hiMGL cells expressed classical microglia markers and exhibited similar transcriptomes and cytokine/chemokine release profiles, only NF1-mutant hiMGL cells had defects in P2X receptor activation, phagocytosis and motility. Taken together, these findings indicate that heterozygous NF1 mutations impair a subset of the functional properties of human microglia, which could contribute to the neurological abnormalities seen in children with NF1.


Asunto(s)
Células Madre Pluripotentes Inducidas , Neurofibromatosis 1 , Animales , Humanos , Ratones , Genes de Neurofibromatosis 1 , Microglía/patología , Mutación/genética , Neurofibromatosis 1/genética , Neurofibromina 1/genética
13.
Cardiovasc Res ; 119(6): 1441-1452, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35904261

RESUMEN

AIMS: Hypertension (HTN) can lead to heart and kidney damage. The gut microbiota has been linked to HTN, although it is difficult to estimate its significance due to the variety of other features known to influence HTN. In the present study, we used germ-free (GF) and colonized (COL) littermate mice to quantify the impact of microbial colonization on organ damage in HTN. METHODS AND RESULTS: 4-week-old male GF C57BL/6J littermates were randomized to remain GF or receive microbial colonization. HTN was induced by subcutaneous infusion with angiotensin (Ang) II (1.44 mg/kg/day) and 1% NaCl in the drinking water; sham-treated mice served as control. Renal damage was exacerbated in GF mice, whereas cardiac damage was more comparable between COL and GF, suggesting that the kidney is more sensitive to microbial influence. Multivariate analysis revealed a larger effect of HTN in GF mice. Serum metabolomics demonstrated that the colonization status influences circulating metabolites relevant to HTN. Importantly, GF mice were deficient in anti-inflammatory faecal short-chain fatty acids (SCFA). Flow cytometry showed that the microbiome has an impact on the induction of anti-hypertensive myeloid-derived suppressor cells and pro-inflammatory Th17 cells in HTN. In vitro inducibility of Th17 cells was significantly higher for cells isolated from GF than conventionally raised mice. CONCLUSION: The microbial colonization status of mice had potent effects on their phenotypic response to a hypertensive stimulus, and the kidney is a highly microbiota-susceptible target organ in HTN. The magnitude of the pathogenic response in GF mice underscores the role of the microbiome in mediating inflammation in HTN.


Asunto(s)
Microbioma Gastrointestinal , Hipertensión , Microbiota , Animales , Masculino , Ratones , Inflamación , Ratones Endogámicos C57BL
14.
Mol Syst Biol ; 7: 489, 2011 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-21613978

RESUMEN

Protein levels within signal transduction pathways vary strongly from cell to cell. Here, we analysed how signalling pathways can still process information quantitatively despite strong heterogeneity in protein levels. We systematically perturbed the protein levels of Erk, the terminal kinase in the MAPK signalling pathway in a panel of human cell lines. We found that the steady-state phosphorylation of Erk is very robust against perturbations of Erk protein level. Although a multitude of mechanisms exist that may provide robustness against fluctuating protein levels, we found that one single feedback from Erk to Raf-1 accounts for the observed robustness. Surprisingly, robustness is provided through a fast post-translational mechanism although variation of Erk levels occurs on a timescale of days.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Retroalimentación Fisiológica , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Proto-Oncogénicas c-raf , Secuencia de Bases , Línea Celular , Proliferación Celular/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/genética , Silenciador del Gen , Humanos , Cómputos Matemáticos , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Fosforilación/efectos de los fármacos , Fosforilación/genética , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Proto-Oncogénicas c-raf/genética , Proteínas Proto-Oncogénicas c-raf/metabolismo , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/farmacología , Transfección
15.
Sci Rep ; 12(1): 7933, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35562573

RESUMEN

The AbsoluteIDQ p400 HR kit is a commercial product for targeted metabolomics. While the kit has been validated for human plasma and serum, adherent cell lysates have not yet been evaluated. We have optimized the detection of polar and lipid metabolites in cell lysates using the kit to enable robust and repeatable analysis of the detected metabolites. Parameters optimized include total cell mass, loading volume and extraction solvent. We present a cell preparation and analytical method and report on the performance of the kit with regard to detectability of the targeted metabolites and their repeatability. The kit can be successfully used for a relative quantification analysis of cell lysates from adherent cells although validated only for human plasma and serum. Most metabolites are below the limit of the Biocrates' set quantification limits and we confirmed that this relative quantification can be used for further statistical analysis. Using this approach, up to 45% of the total metabolites in the kit can be detected with a reasonable analytical performance (lowest median RSD 9% and 13% for LC and FIA, respectively) dependent on the method used. We recommend using ethanol as the extraction solvent for cell lysates of osteosarcoma cell lines for the broadest metabolite coverage and 25 mg of cell mass with a loading volume of 20 µL per sample.


Asunto(s)
Técnicas de Cultivo de Célula , Metabolómica , Humanos , Metabolómica/métodos , Solventes
16.
Talanta ; 242: 123298, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35193012

RESUMEN

Recently, there has been growing interest in short-chain fatty acids (SCFA) and ketone bodies (KB) due to their potential use as biomarkers of health and disease. For instance, these diet-related metabolites can be used to monitor and reduce the risk of immune response, diabetes, or cardiovascular diseases. Given the interest in these metabolites, different targeted metabolomic methods based on UPLC-MS/MS have been developed in recent years to detect and quantify SCFA and KB. In this case study, we discovered that applying an existing validated, targeted UPLC-MS/MS method to mouse plasma, resulted in a fragment ion (194 m/z) being originally misidentified as acetic acid (a SCFA), when its original source was 3-hydroxybutyric acid (a KB). Therefore, we report a modified, optimized LC method that can separate both signals. In addition, the metabolite coverage was expanded in this method to detect up to eight SCFA: acetic, propanoic, butyric, isobutyric, 2-methylbutyric, valeric, isovaleric, and hexanoic acids, two KB: 3-hydroxybutyric, and acetoacetic acids, and one related metabolite: 3-hydroxy-3-methylbutyric acid. The optimization of this method increased the selectivity of the UPLC-MS/MS method towards the misidentified compound. These findings encourage the scientific community to increase efforts in validating the original precursor of small molecule fragments in targeted methods.


Asunto(s)
Ácidos Grasos Volátiles , Espectrometría de Masas en Tándem , Animales , Cromatografía Liquida/métodos , Ácidos Grasos Volátiles/metabolismo , Cuerpos Cetónicos , Ratones , Plasma , Espectrometría de Masas en Tándem/métodos
17.
Metabolites ; 12(5)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35629956

RESUMEN

The identification of endogenous metabolites has great potential for understanding the underlying tissue processes occurring in either a homeostatic or a diseased state. The application of gas chromatography-mass spectrometry (GC-MS)-based metabolomics on musculoskeletal tissue samples has gained traction. However, limited comparison studies exist evaluating the sensitivity, reproducibility, and robustness of the various existing extraction protocols for musculoskeletal tissues. Here, we evaluated polar metabolite extraction from bone and muscle of mouse origin. The extraction methods compared were (1) modified Bligh-Dyer (mBD), (2) low chloroform (CHCl3)-modified Bligh-Dyer (mBD-low), and (3) modified Matyash (mMat). In particular, the central carbon metabolites (CCM) appear to be relevant for musculoskeletal regeneration, given their role in energy metabolism. However, the sensitivity, reproducibility, and robustness of these methods for detecting targeted polar CCM remains unknown. Overall, the extraction of metabolites using the mBD, mBD-low, and mMat methods appears sufficiently robust and reproducible for bone, with the mBD method slightly bettering the mBD-low and mMat methods. Furthermore, mBD, mBD-low, and mMat were sufficiently sensitive in detecting polar metabolites extracted from mouse muscle; however, they lacked repeatability. This study highlights the need for a re-thinking, towards a tissue-specific optimization of methods for metabolite extractions, ensuring sufficient sensitivity, repeatability, and robustness.

18.
Clin Ophthalmol ; 15: 2505-2517, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34163135

RESUMEN

PURPOSE: Nesfatin-1 is produced in various tissues of the body including the hypothalamus. Neuroprotective properties of the neuropeptide hormone Nesfatin-1 were recently described. The aim of the study was to analyze the molecule Nesfatin-1 as a possible biomarker in POAG with neuroprotective properties pointing out the retinal-hypothalamic axis as target site in POAG and to obtain a molecular signature of cytokines in POAG as neuroinflammatory processes are a key factor of glaucoma development. METHODS: In this study, n=35 patients with moderate and advanced POAG (mean age 65.0y, IOP 13.9±3.0mmHg) and n=35 healthy controls (mean age 51.6y, IOP 14.3±2.7mmHg) were included. Clinical parameters including IOP, cup to disc ratio (CDR), glaucoma medication and retinal nerve fiber layer thickness (RNFL) were recorded. Plasma was collected for NUCB2/nesfatin-1 measurement using a Nesfatin-1 ELISA and for detection of 13 inflammatory cytokines using a multiplex bead-based immunoassay (MagPix). Multiple linear regression analysis was performed to adjust for confounding factors. RESULTS: Sex-independent or sex-dependent variables showed no significant differences in the Nesfatin-1 level (p>0.05). As a trend, an increase in NUCB2/nesfatin-1 in male glaucoma patients was found. Increased concentrations of 11 cytokines (GM-CSF, Interferon-γ, Interleukin-1ß, IL-2, 4, 5, 6, 7, 10, 12 and TNF-α) were detected in POAG. The female glaucoma patients demonstrated elevated cytokine concentrations compared to male patients. NUCB2/nesfatin-1 showed a significant correlation to IL-2 and IL-13 levels in POAG. Stepwise multiple regression analysis showed no difference in NUCB2/nesfatin-1 level between POAG and healthy controls after adjusting for sex and age (all p>0.05). CONCLUSION: As a trend, male POAG patients showed increased plasma NUCB2/nesfatin-1 levels. We further found inflammation as contributing factor to the pathogenesis of glaucoma, with a greater inflammatory response in women.

19.
Metabolites ; 11(12)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34940646

RESUMEN

Using manual derivatization in gas chromatography-mass spectrometry samples have varying equilibration times before analysis which increases technical variability and limits the number of potential samples analyzed. By contrast, automated derivatization methods can derivatize and inject each sample in an identical manner. We present a fully automated (on-line) derivatization method used for targeted analysis of different matrices. We describe method optimization and compare results from using off-line and on-line derivatization protocols, including the robustness and reproducibility of the methods. Our final parameters for the derivatization process were 20 µL of methoxyamine (MeOx) in pyridine for 60 min at 30 °C followed by 80 µL N-Methyl-N-trimethylsilyltrifluoracetamide (MSTFA) for 30 min at 30 °C combined with 4 h of equilibration time. The repeatability test in plasma and liver revealed a median relative standard deviation (RSD) of 16% and 10%, respectively. Serum samples showed a consistent intra-batch median RSD of 20% with an inter-batch variability of 27% across three batches. The direct comparison of on-line versus off-line demonstrated that on-line was fit for purpose and improves repeatability with a measured median RSD of 11% compared to 17% using the same method off-line. In summary, we recommend that optimized on-line methods may improve results for metabolomics and should be used where available.

20.
Histopathology ; 57(6): 836-50, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21166698

RESUMEN

AIMS: In osteosarcoma patients the development of metastases, often to the lungs, is the most frequent cause of death. The aim of this study was to elucidate the molecular mechanisms governing osteosarcoma development and dissemination and, thereby, to identify possible novel drug targets for improved treatment. METHODS AND RESULTS: Osteosarcoma samples were characterized using genome-wide microarrays: increased expression of the EphA2 receptor and its ligand EFNA1 was detected. In addition, increased expression of EFNB1, EFNB3 and EphA3 was suggested. Immunohistochemistry revealed an absence of EphA2 in normal bone, and de novo expression in osteosarcomas. EFNA1 was expressed in normal bone, but was significantly elevated in tumours. Further in vitro investigations on the functional role of EphA2 and EFNA1 showed that EFNA1 ligand binding induced increased tyrosine phosphorylation, receptor degradation and downstream mitogen-activated protein kinase (MAPK) activation. Interference with the MAPK pathway unravelled a potential autoregulatory loop governing mainly EFNA1 expression via the same pathway. CONCLUSION: Upregulation and de novo expression of ephrins in osteosarcomas are involved in oncogenic signalling and thus might stimulate osteosarcoma metastasis.


Asunto(s)
Neoplasias Óseas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Osteosarcoma/metabolismo , Receptor EphA2/metabolismo , Transducción de Señal/fisiología , Adolescente , Adulto , Anciano , Western Blotting , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Niño , Efrina-A1/genética , Efrina-A1/metabolismo , Femenino , Humanos , Inmunohistoquímica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Proteínas Quinasas Activadas por Mitógenos/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Osteosarcoma/genética , Osteosarcoma/patología , Fosforilación , Receptor EphA2/genética , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA