Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Regul Toxicol Pharmacol ; 150: 105640, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754805

RESUMEN

N-Nitrosamine impurities, including nitrosamine drug substance-related impurities (NDSRIs), have challenged pharmaceutical industry and regulators alike and affected the global drug supply over the past 5 years. Nitrosamines are a class of known carcinogens, but NDSRIs have posed additional challenges as many lack empirical data to establish acceptable intake (AI) limits. Read-across analysis from surrogates has been used to identify AI limits in some cases; however, this approach is limited by the availability of robustly-tested surrogates matching the structural features of NDSRIs, which usually contain a diverse array of functional groups. Furthermore, the absence of a surrogate has resulted in conservative AI limits in some cases, posing practical challenges for impurity control. Therefore, a new framework for determining recommended AI limits was urgently needed. Here, the Carcinogenic Potency Categorization Approach (CPCA) and its supporting scientific rationale are presented. The CPCA is a rapidly-applied structure-activity relationship-based method that assigns a nitrosamine to 1 of 5 categories, each with a corresponding AI limit, reflecting predicted carcinogenic potency. The CPCA considers the number and distribution of α-hydrogens at the N-nitroso center and other activating and deactivating structural features of a nitrosamine that affect the α-hydroxylation metabolic activation pathway of carcinogenesis. The CPCA has been adopted internationally by several drug regulatory authorities as a simplified approach and a starting point to determine recommended AI limits for nitrosamines without the need for compound-specific empirical data.


Asunto(s)
Carcinógenos , Contaminación de Medicamentos , Nitrosaminas , Nitrosaminas/análisis , Nitrosaminas/toxicidad , Carcinógenos/análisis , Carcinógenos/toxicidad , Contaminación de Medicamentos/prevención & control , Humanos , Animales , Relación Estructura-Actividad , Medición de Riesgo , Pruebas de Carcinogenicidad
2.
Crit Rev Toxicol ; 51(3): 264-282, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-34038674

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNA that regulate the expression of messenger RNA and are implicated in almost all cellular processes. Importantly, miRNAs can be released extracellularly and are stable in these matrices where they may serve as indicators of organ or cell-specific toxicity, disease, and biological status. There has thus been great enthusiasm for developing miRNAs as biomarkers of adverse outcomes for scientific, regulatory, and clinical purposes. Despite advances in measurement capabilities for miRNAs, miRNAs are still not routinely employed as noninvasive biomarkers. This is in part due to the lack of standard approaches for sample preparation and miRNA measurement and uncertainty in their biological interpretation. Members of the microRNA Biomarkers Workgroup within the Health and Environmental Sciences Institute's (HESI) Committee on Emerging Systems Toxicology for the Assessment of Risk (eSTAR) are a consortium of private- and public-sector scientists dedicated to developing miRNAs as applied biomarkers. Here, we explore major impediments to routine acceptance and use of miRNA biomarkers and case examples of successes and deficiencies in development. Finally, we provide insight on miRNA measurement, collection, and analysis tools to provide solid footing for addressing knowledge gaps toward routine biomarker use.


Asunto(s)
Biomarcadores , MicroARNs , Toxicología , Humanos
3.
Regul Toxicol Pharmacol ; 110: 104526, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31726190

RESUMEN

Robust genomic approaches are now available to realize improvements in efficiencies and translational relevance of cancer risk assessments for drugs and chemicals. Mechanistic and pathway data generated via genomics provide opportunities to advance beyond historical reliance on apical endpoints of uncertain human relevance. Published research and regulatory evaluations include many examples for which genomic data have been applied to address cancer risk assessment as a health protection endpoint. The alignment of mature, robust, reproducible, and affordable technologies with increasing demands for reduced animal testing sets the stage for this important transition. We present our shared vision for change from leading scientists from academic, government, nonprofit, and industrial sectors and chemical and pharmaceutical safety applications. This call to action builds upon a 2017 workshop on "Advances and Roadblocks for Use of Genomics in Cancer Risk Assessment." The authors propose a path for implementation of innovative cancer risk assessment including incorporating genomic signatures to assess mechanistic relevance of carcinogenicity and enhanced use of genomics in benchmark dose and point of departure evaluations. Novel opportunities for the chemical and pharmaceutical sectors to combine expertise, resources, and objectives to achieve a common goal of improved human health protection are identified.


Asunto(s)
Carcinógenos/toxicidad , Neoplasias/inducido químicamente , Medición de Riesgo , Toxicogenética , Animales , Pruebas de Carcinogenicidad , Industria Química , Industria Farmacéutica , Humanos
4.
Environ Mol Mutagen ; 64(2): 105-122, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36495195

RESUMEN

Genotoxicity assessment is a critical component in the development and evaluation of chemicals. Traditional genotoxicity assays (i.e., mutagenicity, clastogenicity, and aneugenicity) have been limited to dichotomous hazard classification, while other toxicity endpoints are assessed through quantitative determination of points-of-departures (PODs) for setting exposure limits. The more recent higher-throughput in vitro genotoxicity assays, many of which also provide mechanistic information, offer a powerful approach for determining defined PODs for potency ranking and risk assessment. In order to obtain relevant human dose context from the in vitro assays, in vitro to in vivo extrapolation (IVIVE) models are required to determine what dose would elicit a concentration in the body demonstrated to be genotoxic using in vitro assays. Previous work has demonstrated that application of IVIVE models to in vitro bioactivity data can provide PODs that are protective of human health, but there has been no evaluation of how these models perform with in vitro genotoxicity data. Thus, the Genetic Toxicology Technical Committee, under the Health and Environmental Sciences Institute, conducted a case study on 31 reference chemicals to evaluate the performance of IVIVE application to genotoxicity data. The results demonstrate that for most chemicals considered here (20/31), the PODs derived from in vitro data and IVIVE are health protective relative to in vivo PODs from animal studies. PODs were also protective by assay target: mutations (8/13 chemicals), micronuclei (9/12), and aneugenicity markers (4/4). It is envisioned that this novel testing strategy could enhance prioritization, rapid screening, and risk assessment of genotoxic chemicals.


Asunto(s)
Daño del ADN , Mutágenos , Animales , Humanos , Mutación , Mutágenos/toxicidad , Medición de Riesgo , Pruebas de Mutagenicidad/métodos
5.
Toxicol Sci ; 188(1): 4-16, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35404422

RESUMEN

There is growing recognition across broad sectors of the scientific community that use of genomic biomarkers has the potential to reduce the need for conventional rodent carcinogenicity studies of industrial chemicals, agrochemicals, and pharmaceuticals through a weight-of-evidence approach. These biomarkers fall into 2 major categories: (1) sets of gene transcripts that can identify distinct tumorigenic mechanisms of action; and (2) cancer driver gene mutations indicative of rapidly expanding growth-advantaged clonal cell populations. This call-to-action article describes a collaborative approach launched to develop and qualify biomarker gene expression panels that measure widely accepted molecular pathways linked to tumorigenesis and their activation levels to predict tumorigenic doses of chemicals from short-term exposures. Growing evidence suggests that application of such biomarker panels in short-term exposure rodent studies can identify both tumorigenic hazard and tumorigenic activation levels for chemical-induced carcinogenicity. In the future, this approach will be expanded to include methodologies examining mutations in key cancer driver gene mutation hotspots as biomarkers of both genotoxic and nongenotoxic chemical tumor risk. Analytical, technical, and biological validation studies of these complementary genomic tools are being undertaken by multisector and multidisciplinary collaborative teams within the Health and Environmental Sciences Institute. Success from these efforts will facilitate the transition from current heavy reliance on conventional 2-year rodent carcinogenicity studies to more rapid animal- and resource-sparing approaches for mechanism-based carcinogenicity evaluation supporting internal and regulatory decision-making.


Asunto(s)
Neoplasias , Roedores , Animales , Biomarcadores de Tumor/genética , Carcinogénesis , Pruebas de Carcinogenicidad , Carcinógenos/toxicidad , Genómica , Neoplasias/inducido químicamente , Neoplasias/genética
6.
Environ Mol Mutagen ; 62(9): 512-525, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34775645

RESUMEN

We present a hypothetical case study to examine the use of a next-generation framework developed by the Genetic Toxicology Technical Committee of the Health and Environmental Sciences Institute for assessing the potential risk of genetic damage from a pharmaceutical perspective. We used etoposide, a genotoxic carcinogen, as a representative pharmaceutical for the purposes of this case study. Using the framework as guidance, we formulated a hypothetical scenario for the use of etoposide to illustrate the application of the framework to pharmaceuticals. We collected available data on etoposide considered relevant for assessment of genetic toxicity risk. From the data collected, we conducted a quantitative analysis to estimate margins of exposure (MOEs) to characterize the risk of genetic damage that could be used for decision-making regarding the predefined hypothetical use. We found the framework useful for guiding the selection of appropriate tests and selecting relevant endpoints that reflected the potential for genetic damage in patients. The risk characterization, presented as MOEs, allows decision makers to discern how much benefit is critical to balance any adverse effect(s) that may be induced by the pharmaceutical. Interestingly, pharmaceutical development already incorporates several aspects of the framework per regulations and health authority expectations. Moreover, we observed that quality dose response data can be obtained with carefully planned but routinely conducted genetic toxicity testing. This case study demonstrates the utility of the next-generation framework to quantitatively model human risk based on genetic damage, as applicable to pharmaceuticals.


Asunto(s)
Antineoplásicos Fitogénicos/efectos adversos , Etopósido/efectos adversos , Animales , Daño del ADN , Genómica , Humanos
7.
Environ Mol Mutagen ; 61(1): 114-134, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31603995

RESUMEN

In May 2017, the Health and Environmental Sciences Institute's Genetic Toxicology Technical Committee hosted a workshop to discuss whether mode of action (MOA) investigation is enhanced through the application of the adverse outcome pathway (AOP) framework. As AOPs are a relatively new approach in genetic toxicology, this report describes how AOPs could be harnessed to advance MOA analysis of genotoxicity pathways using five example case studies. Each of these genetic toxicology AOPs proposed for further development includes the relevant molecular initiating events, key events, and adverse outcomes (AOs), identification and/or further development of the appropriate assays to link an agent to these events, and discussion regarding the biological plausibility of the proposed AOP. A key difference between these proposed genetic toxicology AOPs versus traditional AOPs is that the AO is a genetic toxicology endpoint of potential significance in risk characterization, in contrast to an adverse state of an organism or a population. The first two detailed case studies describe provisional AOPs for aurora kinase inhibition and tubulin binding, leading to the common AO of aneuploidy. The remaining three case studies highlight provisional AOPs that lead to chromosome breakage or mutation via indirect DNA interaction (inhibition of topoisomerase II, production of cellular reactive oxygen species, and inhibition of DNA synthesis). These case studies serve as starting points for genotoxicity AOPs that could ultimately be published and utilized by the broader toxicology community and illustrate the practical considerations and evidence required to formalize such AOPs so that they may be applied to genetic toxicity evaluation schemes. Environ. Mol. Mutagen. 61:114-134, 2020. © 2019 Wiley Periodicals, Inc.


Asunto(s)
Rutas de Resultados Adversos , Pruebas de Mutagenicidad , Mutágenos/toxicidad , Aneuploidia , Animales , Aurora Quinasa A/antagonistas & inhibidores , Rotura Cromosómica/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Humanos , Pruebas de Mutagenicidad/métodos , Mutación/efectos de los fármacos
8.
Artículo en Inglés | MEDLINE | ID: mdl-31708072

RESUMEN

As part of the 7th International Workshops on Genotoxicity Testing held in Tokyo, Japan in November 2017, a workgroup of experts reviewed and assessed the risk of aneugens for human health. The present manuscript is one of three manuscripts from the workgroup and reports on the unanimous consensus reached on the evidence for aneugens affecting germ cells, their mechanisms of action and role in hereditary diseases. There are 24 chemicals with strong or sufficient evidence for germ cell aneugenicity providing robust support for the ability of chemicals to induce germ cell aneuploidy. Interference with microtubule dynamics or inhibition of topoisomerase II function are clear characteristics of germ cell aneugens. Although there are mechanisms of chromosome segregation that are unique to germ cells, there is currently no evidence for germ cell-specific aneugens. However, the available data are heavily skewed toward chemicals that are aneugenic in somatic cells. Development of high-throughput screening assays in suitable animal models for exploring additional targets for aneuploidy induction, such as meiosis-specific proteins, and to prioritize chemicals for the potential to be germ cell aneugens is encouraged. Evidence in animal models support that: oocytes are more sensitive than spermatocytes and somatic cells to aneugens; exposure to aneugens leads to aneuploid conceptuses; and, the frequencies of aneuploidy are similar in germ cells and zygotes. Although aneuploidy in germ cells is a significant cause of infertility and pregnancy loss in humans, there is currently limited evidence that aneugens induce hereditary diseases in human populations because the great majority of aneuploid conceptuses die in utero. Overall, the present work underscores the importance of protecting the human population from exposure to chemicals that can induce aneuploidy in germ cells that, in contrast to carcinogenicity, is directly linked to an adverse outcome.


Asunto(s)
Aneugénicos/toxicidad , Aneuploidia , Carcinogénesis , Enfermedades Genéticas Congénitas/patología , Células Germinativas/efectos de los fármacos , Animales , Células Germinativas/patología , Humanos , Factores de Riesgo
9.
Artículo en Inglés | MEDLINE | ID: mdl-31699346

RESUMEN

An aneuploidy workgroup was established as part of the 7th International Workshops on Genotoxicity Testing. The workgroup conducted a review of the scientific literature on the biological mechanisms of aneuploidy in mammalian cells and methods used to detect chemical aneugens. In addition, the current regulatory framework was discussed, with the objective to arrive at consensus statements on the ramifications of exposure to chemical aneugens for human health risk assessment. As part of these efforts, the workgroup explored the use of adverse outcome pathways (AOPs) to document mechanisms of chemically induced aneuploidy in mammalian somatic cells. The group worked on two molecular initiating events (MIEs), tubulin binding and binding to the catalytic domain of aurora kinase B, which result in several adverse outcomes, including aneuploidy. The workgroup agreed that the AOP framework provides a useful approach to link evidence for MIEs with aneuploidy on a cellular level. The evidence linking chemically induced aneuploidy with carcinogenicity and hereditary disease was also reviewed and is presented in two companion papers. In addition, the group came to the consensus that the current regulatory test batteries, while not ideal, are sufficient for the identification of aneugens and human risk assessment. While it is obvious that there are many different MIEs that could lead to the induction of aneuploidy, the most commonly observed mechanisms involving chemical aneugens are related to tubulin binding and, to a lesser extent, inhibition of mitotic kinases. The comprehensive review presented here should help with the identification and risk management of aneugenic agents.


Asunto(s)
Rutas de Resultados Adversos , Aneuploidia , Enfermedades Genéticas Congénitas/inducido químicamente , Mitosis/efectos de los fármacos , Pruebas de Mutagenicidad/métodos , Mutágenos/toxicidad , Neoplasias/inducido químicamente , Animales , Aurora Quinasa B/antagonistas & inhibidores , Aurora Quinasa B/fisiología , Carcinógenos/toxicidad , Aberraciones Cromosómicas/inducido químicamente , Segregación Cromosómica/efectos de los fármacos , Cromosomas/efectos de los fármacos , Genes Reporteros , Enfermedades Genéticas Congénitas/genética , Células Germinativas/efectos de los fármacos , Células Germinativas/ultraestructura , Humanos , Ratones , Pruebas de Micronúcleos , Microtúbulos/efectos de los fármacos , Mitosis/fisiología , Pruebas de Mutagenicidad/normas , Mutágenos/análisis , Neoplasias/genética , No Disyunción Genética/efectos de los fármacos , Gestión de Riesgos/legislación & jurisprudencia , Moduladores de Tubulina/toxicidad
10.
Artículo en Inglés | MEDLINE | ID: mdl-31699349

RESUMEN

Aneuploidy is regarded as a hallmark of cancer, however, its role is complex with both pro- and anti-carcinogenic effects evident. In this IWGT review, we consider the role of aneuploidy in cancer biology; cancer risk associated with constitutive aneuploidy; rodent carcinogenesis with known chemical aneugens; and chemotherapy-related malignant neoplasms. Aneuploidy is seen at various stages in carcinogenesis. However, the relationship between induced aneuploidy occurring after exposure and clonal aneuploidy present in tumours is not clear. Recent evidence indicates that the induction of chromosomal instability (CIN), may be more important than aneuploidy per se, in the carcinogenic process. Down Syndrome, trisomy 21, is associated with altered hematopoiesis in utero which, in combination with subsequent mutations, results in an increased risk for acute megakaryoblastic and lymphoblastic leukemias. In contrast, there is reduced cancer risk for most solid tumours in Down Syndrome. Mouse models with high levels of aneuploidy are also associated with increased cancer risk for particular tumours with long latencies, but paradoxically other types of tumour often show decreased incidence. The aneugens reviewed that induce cancer in humans and animals all possess other carcinogenic properties, such as mutagenicity, clastogenicity, cytotoxicity, organ toxicities, hormonal and epigenetic changes which likely account for, or interact with aneuploidy, to cause carcinogenesis. Although the role that aneuploidy plays in carcinogenesis has not been fully established, in many cases, it may not play a primary causative role. Tubulin-disrupting aneugens that do not possess other properties linked to carcinogenesis, were not carcinogenic in rodents. Similarly, in humans, for the tubulin-disrupting aneugens colchicine and albendazole, there is no reported association with increased cancer risk. There is a need for further mechanistic studies on agents that induce aneuploidy, particularly by mechanisms other than tubulin disruption and to determine the role of aneuploidy in pre-neoplastic events and in early and late stage neoplasia.


Asunto(s)
Aneuploidia , Carcinogénesis/genética , Carcinógenos/toxicidad , Inestabilidad Cromosómica , Pruebas de Mutagenicidad/métodos , Neoplasias/inducido químicamente , Animales , Centrosoma , Trastornos de los Cromosomas/genética , Cromosomas/efectos de los fármacos , Síndrome de Down/complicaciones , Síndrome de Down/genética , Predisposición Genética a la Enfermedad , Humanos , Ratones , Modelos Animales , Pruebas de Mutagenicidad/normas , Mutágenos/toxicidad , Neoplasias/genética , Neoplasias Primarias Secundarias/inducido químicamente , Neoplasias Primarias Secundarias/genética , Huso Acromático/efectos de los fármacos , Moduladores de Tubulina/toxicidad
12.
Artículo en Inglés | MEDLINE | ID: mdl-25953398

RESUMEN

The in vivo Pig-a assay uses flow cytometry to measure phenotypic variants for antibody binding to cell surface glycosylphosphatidylinositol (GPI)-anchored proteins. There is good evidence suggesting that the absence of antibody binding is the result of a mutation in the endogenous X-linked Pig-a gene, which forms the rationale for the assay. Although the assay has been performed with several types of hematopoietic cells and in a variety of mammalian species, including humans, currently it is optimized only for measuring CD59-deficient (presumed Pig-a mutant) erythrocytes in the peripheral blood of rats. An expert workgroup formed by the International Workshop on Genotoxicity Testing considered the state of assay development and the potential of the assay for regulatory use. Consensus was reached on what is known about the Pig-a assay and how it should be conducted, and recommendations were made on additional data and refinements that would help to further enhance the assay for use in hazard identification and risk assessment.


Asunto(s)
Anemia Hemolítica , Eritrocitos , Citometría de Flujo , Hemoglobinuria , Proteínas de la Membrana , Mutación , Anemia Hemolítica/metabolismo , Anemia Hemolítica/patología , Animales , Anticuerpos/química , Educación , Eritrocitos/metabolismo , Eritrocitos/patología , Citometría de Flujo/métodos , Citometría de Flujo/normas , Hemoglobinuria/metabolismo , Hemoglobinuria/patología , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA