Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
EMBO J ; 40(1): e105179, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33289941

RESUMEN

In eukaryotic translation, termination and ribosome recycling phases are linked to subsequent initiation of a new round of translation by persistence of several factors at ribosomal sub-complexes. These comprise/include the large eIF3 complex, eIF3j (Hcr1 in yeast) and the ATP-binding cassette protein ABCE1 (Rli1 in yeast). The ATPase is mainly active as a recycling factor, but it can remain bound to the dissociated 40S subunit until formation of the next 43S pre-initiation complexes. However, its functional role and native architectural context remains largely enigmatic. Here, we present an architectural inventory of native yeast and human ABCE1-containing pre-initiation complexes by cryo-EM. We found that ABCE1 was mostly associated with early 43S, but also with later 48S phases of initiation. It adopted a novel hybrid conformation of its nucleotide-binding domains, while interacting with the N-terminus of eIF3j. Further, eIF3j occupied the mRNA entry channel via its ultimate C-terminus providing a structural explanation for its antagonistic role with respect to mRNA binding. Overall, the native human samples provide a near-complete molecular picture of the architecture and sophisticated interaction network of the 43S-bound eIF3 complex and the eIF2 ternary complex containing the initiator tRNA.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Línea Celular , Proteínas de Unión al ADN/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Células HEK293 , Humanos , Unión Proteica/fisiología , Biosíntesis de Proteínas/fisiología , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
EMBO J ; 38(14): e100640, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31304628

RESUMEN

The Ski2-Ski3-Ski8 (SKI) complex assists the RNA exosome during the 3' to 5' degradation of cytoplasmic transcripts. Previous reports showed that the SKI complex is involved in the 3' to 5' degradation of mRNAs, including 3' untranslated regions (UTRs) and devoid of ribosomes. Paradoxically, we recently showed that the SKI complex directly interacts with ribosomes during the co-translational mRNA decay and that this interaction is necessary for its RNA degradation promoting activity. Here, we characterised a new SKI-associated factor, Ska1, that associates with a subpopulation of the SKI complex. We showed that Ska1 is specifically involved in the degradation of long 3'UTR-containing mRNAs, poorly translated mRNAs as well as other RNA regions not associated with ribosomes, such as cytoplasmic lncRNAs. We further show that the overexpression of SKA1 antagonises the SKI-ribosome association. We propose that the Ska1-SKI complex assists the cytoplasmic exosome in the absence of direct association of the SKI complex with ribosomes.


Asunto(s)
Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Citoplasma/genética , Estabilidad del ARN , ARN de Hongos/química , ARN Largo no Codificante/química , ARN Mensajero/química , Saccharomyces cerevisiae/metabolismo
3.
J Biol Chem ; 291(23): 12245-53, 2016 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-27129255

RESUMEN

Protein homeostasis is maintained by quality control mechanisms that detect and eliminate deficient translation products. Cytosolic defective proteins can arise from translation of aberrant mRNAs lacking a termination codon (NonStop) or containing a sequence that blocks translation elongation (No-Go), which results in translational arrest. Stalled ribosomes are dissociated, aberrant mRNAs are degraded by the cytoplasmic exosome, and the nascent peptides remaining in stalled 60S exit tunnels are detected by the ribosome-bound quality control complex (RQC) composed of Ltn1, Rqc1, Rqc2, and Cdc48. Whereas Ltn1 polyubiquitylates these nascent peptides, Rqc2 directs the addition of C-terminal alanine-threonine tails (CAT-tails), and a Cdc48 hexamer is recruited to extract the nascent peptides, which are addressed to the proteasome for degradation. Although the functions of most RQC components have been described, the role of Rqc1 in this quality control process remains undetermined. In this article we show that the absence of Rqc1 or Ltn1 results in the aggregation of aberrant proteins, a phenomenon that requires CAT-tail addition to the nascent peptides by Rqc2. Our results suggest that aberrant CAT-tailed protein aggregation results from a defect in Cdc48 recruitment to stalled 60S particles, a process that requires both Rqc1 and Ltn1. These protein aggregates contain Ltn1-dependent polyubiquitin chains and are degraded by the proteasome. Finally, aggregate characterization by proteomics revealed that they contain specific chaperones including Sis1, Sgt2, Ssa1/2, and Hsp82, suggesting that these protein aggregates may be addressed to aggresome-like structures when the RQC complex fails to deliver aberrant nascent peptides to the proteasome for degradation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Alanina/química , Alanina/genética , Alanina/metabolismo , Western Blotting , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Microscopía Fluorescente , Mutación , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregado de Proteínas , Biosíntesis de Proteínas/genética , Proteolisis , Proteómica/métodos , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Treonina/química , Treonina/genética , Treonina/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Proteína que Contiene Valosina
4.
Curr Genet ; 63(6): 997-1005, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28528489

RESUMEN

Proteostasis in eukaryotes is maintained by compartment-specific quality control pathways, which enable the refolding or the degradation of defective polypeptides to prevent the toxicity that may arise from their aggregation. Among these processes, translational protein quality control is performed by the Ribosome-bound Quality Control complex (RQC), which recognizes nascent peptides translated from aberrant mRNAs, polyubiquitylates these aberrant peptides, extracts them from the stalled 60S subunit and finally escorts them to the proteasome for degradation. In this review, we focus on the mechanism of action of the RQC complex from stalled 60S binding to aberrant peptide delivery to the proteasome and describe the cellular consequences of a deficiency in the RQC pathway, such as aberrant protein aggregation. In addition, this review covers the recent discoveries concerning the role of cytosolic chaperones, as well as Tom1, to prevent the accumulation of aberrant protein aggregates in case of a deficiency in the RQC pathway.


Asunto(s)
Chaperonas Moleculares/genética , Biosíntesis de Proteínas , Proteostasis/genética , Subunidades Ribosómicas Grandes de Eucariotas/genética , Saccharomyces cerevisiae/genética , Animales , Humanos , Chaperonas Moleculares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregado de Proteínas/genética , Proteolisis , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
5.
Proc Natl Acad Sci U S A ; 110(13): 5046-51, 2013 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-23479637

RESUMEN

Ribosome stalling on eukaryotic mRNAs triggers cotranslational RNA and protein degradation through conserved mechanisms. For example, mRNAs lacking a stop codon are degraded by the exosome in association with its cofactor, the SKI complex, whereas the corresponding aberrant nascent polypeptides are ubiquitinated by the E3 ligases Ltn1 and Not4 and become proteasome substrates. How translation arrest is linked with polypeptide degradation is still unclear. Genetic screens with SKI and LTN1 mutants allowed us to identify translation-associated element 2 (Tae2) and ribosome quality control 1 (Rqc1), two factors that we found associated, together with Ltn1 and the AAA-ATPase Cdc48, to 60S ribosomal subunits. Translation-associated element 2 (Tae2), Rqc1, and Cdc48 were all required for degradation of polypeptides synthesized from Non-Stop mRNAs (Non-Stop protein decay; NSPD). Both Ltn1 and Rqc1 were essential for the recruitment of Cdc48 to 60S particles. Polysome gradient analyses of mutant strains revealed unique intermediates of this pathway, showing that the polyubiquitination of Non-Stop peptides is a progressive process. We propose that ubiquitination of the nascent peptide starts on the 80S and continues on the 60S, on which Cdc48 is recruited to escort the substrate for proteasomal degradation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Biosíntesis de Proteínas/fisiología , Proteolisis , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitinación/fisiología , Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Unión al ARN , Proteínas Represoras , Subunidades Ribosómicas Grandes de Eucariotas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteína que Contiene Valosina
6.
Nucleic Acids Res ; 41(20): 9461-70, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23945946

RESUMEN

Ribosome biogenesis requires >300 assembly factors in Saccharomyces cerevisiae. Ribosome assembly factors Imp3, Mrt4, Rlp7 and Rlp24 have sequence similarity to ribosomal proteins S9, P0, L7 and L24, suggesting that these pre-ribosomal factors could be placeholders that prevent premature assembly of the corresponding ribosomal proteins to nascent ribosomes. However, we found L7 to be a highly specific component of Rlp7-associated complexes, revealing that the two proteins can bind simultaneously to pre-ribosomal particles. Cross-linking and cDNA analysis experiments showed that Rlp7 binds to the ITS2 region of 27S pre-rRNAs, at two sites, in helix III and in a region adjacent to the pre-rRNA processing sites C1 and E. However, L7 binds to mature 25S and 5S rRNAs and cross-linked predominantly to helix ES7(L)b within 25S rRNA. Thus, despite their predicted structural similarity, our data show that Rlp7 and L7 clearly bind at different positions on the same pre-60S particles. Our results also suggest that Rlp7 facilitates the formation of the hairpin structure of ITS2 during 60S ribosomal subunit maturation.


Asunto(s)
ARN Ribosómico/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Bases , Sitios de Unión , Datos de Secuencia Molecular , Precursores del ARN/química , Precursores del ARN/metabolismo , ARN Ribosómico/química , ARN Ribosómico 5S/química , ARN Ribosómico 5S/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/química
7.
MicroPubl Biol ; 20242024.
Artículo en Inglés | MEDLINE | ID: mdl-38585201

RESUMEN

27 years after the yeast genome sequencing, the function of many ORFs remain unknown. Despite the evolutionary distance between human and yeast, homology with the conserved DEAH/DExH-box helicase domains allowed us to list DHX29, DHX36 and DHX57 as three putative homologs of the yeast Ylr419wp. Functional studies first linked the Ylr419w protein to the translating ribosome and cross-linking and analysis of cDNA (CRAC) experiments determined the precise region of Ylr419wp in contact with the ribosome. It corresponds to the loop of the h16 helix in the 18S rRNA designing the translation initiation factor DHX29, as the functional homolog of Ylr419wp.

8.
MicroPubl Biol ; 20232023.
Artículo en Inglés | MEDLINE | ID: mdl-37746059

RESUMEN

mRNA degradation is one of the main steps of gene expression, and a key player is the 5'-3' exonuclease Xrn1. In Saccharomyces cerevisiae , it was previously shown, by a microscopy approach, that Xrn1 is located to different cellular compartments, depending on physiological state. During exponential growth, Xrn1 is distributed in the cytoplasm, while it co-localizes with eisosomes after the post-diauxic shift (PDS). Here, we biochemically characterize the Xrn1-associated complexes in different cellular states. We demonstrate that, after PDS, Xrn1 but not the decapping nor Lsm1-7/Pat1 complexes associates with eisosomal proteins, strengthening the model that sequestration of Xrn1 in eisosomes preserves mRNAs from degradation during PDS.

9.
PLoS One ; 18(11): e0293228, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38011112

RESUMEN

Translation initiation is a complex and highly regulated process that represents an important mechanism, controlling gene expression. eIF2A was proposed as an alternative initiation factor, however, its role and biological targets remain to be discovered. To further gain insight into the function of eIF2A in Saccharomyces cerevisiae, we identified mRNAs associated with the eIF2A complex and showed that 24% of the most enriched mRNAs encode proteins related to cell wall biogenesis and maintenance. In agreement with this result, we showed that an eIF2A deletion sensitized cells to cell wall damage induced by calcofluor white. eIF2A overexpression led to a growth defect, correlated with decreased synthesis of several cell wall proteins. In contrast, no changes were observed in the transcriptome, suggesting that eIF2A controls the expression of cell wall-related proteins at a translational level. The biochemical characterization of the eIF2A complex revealed that it strongly interacts with the RNA binding protein, Ssd1, which is a negative translational regulator, controlling the expression of cell wall-related genes. Interestingly, eIF2A and Ssd1 bind several common mRNA targets and we found that the binding of eIF2A to some targets was mediated by Ssd1. Surprisingly, we further showed that eIF2A is physically and functionally associated with the exonuclease Xrn1 and other mRNA degradation factors, suggesting an additional level of regulation. Altogether, our results highlight new aspects of this complex and redundant fine-tuned regulation of proteins expression related to the cell wall, a structure required to maintain cell shape and rigidity, providing protection against harmful environmental stress.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ARN Mensajero/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Expresión Génica , Regulación Fúngica de la Expresión Génica
10.
RNA ; 16(5): 1007-17, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20348449

RESUMEN

In eukaryotes, ribosome biogenesis is a highly conserved process that starts in the nucleus and ends in the cytoplasm. In actively growing yeast cells, it is estimated that each nuclear pore complex (NPC) contributes to the export of about 25 pre-ribosomal particles per minute. Such an extremely active process requires several redundant export receptors for the pre-60S particles. Here, we report the identification of a novel pre-60S factor, Ecm1, which partially acts like Arx1 and becomes essential when the NPC function is affected. Ecm1 depletion, combined with the deletion of NPC components led to pre-60S retention in the nucleus. Functional links that we identified between Ecm1, 60S biogenesis, pre-60S export, and the NPC were correlated with physical interactions of Ecm1 with pre-60S particles and nucleoporins. These results support that Ecm1 is an additional factor involved in pre-60S export. While Ecm1 and Arx1 have redundant functions, overproduction of either one could not complement the absence of the other, whereas overproduction of Mex67 was able to partially restore the growth defect resulting from the absence of Ecm1 or Arx1. These data highlight the involvement of many factors acting together to export pre-60S particles.


Asunto(s)
Precursores del ARN/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular , Genes Fúngicos , Poro Nuclear/metabolismo , Precursores del ARN/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Técnicas del Sistema de Dos Híbridos , beta Carioferinas/genética , beta Carioferinas/metabolismo
11.
Nat Cell Biol ; 4(3): 214-21, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11862215

RESUMEN

Recent experiments have shown that gene repression can be correlated with relocation of genes to heterochromatin-rich silent domains. Here, we investigate whether nuclear architecture and spatial positioning can contribute directly to the transcriptional activity of a genetic locus in Saccharomyces cerevisiae. By disassembling telomeric silent domains without altering the chromatin-mediated silencing machinery, we show that the transcriptional activity of silencer--reporter constructs depends on intranuclear position. This demonstrates that telomeric silent domains are actively involved in transcriptional silencing. Employing fluorescent in situ hybridization (FISH) in combination with genetic assays, we demonstrate that telomeres control the establishment of transcriptional states by reversible partitioning with the perinuclear silencing domains. Anchoring telomeres interferes with their ability to assume an active state, whereas disassembly of silencing domains prevents telomeres from assuming a repressed state. Our data support a model in which domains of enriched transcriptional regulators allow genes to determine transcriptional states by spatial positioning.


Asunto(s)
Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telómero/genética , Telómero/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Silenciador del Gen , Genes Fúngicos , Genes Reporteros , Hibridación Fluorescente in Situ , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Eliminación de Secuencia , Transcripción Genética , Activación Transcripcional , Técnicas del Sistema de Dos Híbridos
12.
J Cell Biol ; 173(3): 349-60, 2006 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-16651379

RESUMEN

Eukaryotic pre-ribosomes go through cytoplasmic maturation steps before entering translation. The nucleocytoplasmic proteins participating in these late stages of maturation are reimported to the nucleus. In this study, we describe a functional network focused on Rei1/Ybr267w, a strictly cytoplasmic pre-60S factor indirectly involved in nuclear 27S pre-ribosomal RNA processing. In the absence of Rei1, the nuclear import of at least three other pre-60S factors is impaired. The accumulation in the cytoplasm of a small complex formed by the association of Arx1 with a novel factor, Alb1/Yjl122w, inhibits the release of the putative antiassociation factor Tif6 from the premature large ribosomal subunits and its recycling to the nucleus. We propose a model in which Rei1 is a key factor for the coordinated dissociation and recycling of the last pre-60S factors before newly synthesized large ribosomal subunits enter translation.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Unión al ARN/fisiología , Proteínas Ribosómicas/fisiología , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Modelos Biológicos , Mutación , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Polirribosomas/química , Polirribosomas/metabolismo , Unión Proteica , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Técnicas del Sistema de Dos Híbridos
13.
Proc Natl Acad Sci U S A ; 105(15): 5821-6, 2008 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-18408161

RESUMEN

Describing at a genomic scale how mutations in different genes influence one another is essential to the understanding of how genotype correlates with phenotype and remains a major challenge in biology. Previous studies pointed out the need for accurate measurements of not only synthetic but also buffering interactions in the characterization of genetic networks and functional modules. We developed a sensitive and efficient method that allows such measurements at a genomic scale in yeast. In a pilot experiment (41 genome-wide screens), we quantified the fitness of 140,000 double deletion strains relative to the corresponding single mutants and identified many genetic interactions. In addition to synthetic growth defects (validated experimentally with factors newly identified as genetically interfering with mRNA degradation), most of the identified genetic interactions measured weak epistatic effects. These weak effects, rarely meaningful when considered individually, were crucial to defining specific signatures for many gene deletions and had a major contribution in defining clusters of functionally related genes.


Asunto(s)
Redes Reguladoras de Genes , Genes Fúngicos , Mutación , Biblioteca de Genes , Genoma Fúngico , Saccharomyces cerevisiae/genética , Levaduras
14.
Mol Cell Biol ; 27(8): 2897-909, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17308036

RESUMEN

Ribosome biogenesis is driven by a large number of preribosomal factors that associate with and dissociate from the preribosomal particles along the maturation pathway. We have previously shown that budding yeast Mak11, whose homologues in other eukaryotes were described as modulating a p21-activated protein kinase function, accumulates in Rlp24-associated pre-60S complexes when their maturation is impeded in Saccharomyces cerevisiae. The functional inactivation of WD40 repeat protein Mak11 interfered with the 60S rRNA maturation, led to a cell cycle delay in G(1), and blocked green fluorescent protein-tagged Rpl25 in the nucleoli of yeast cells, indicating an early role of Mak11 in ribosome assembly. Surprisingly, Mak11 inactivation also led to a dramatic destabilization of Rlp24. The suppression of the thermosensitive phenotype of a mak11 mutant by RLP24 overexpression and a direct in vitro interaction between Rlp24 and Mak11 suggest that Mak11 acts as an Rlp24 cofactor during early steps of 60S ribosomal subunit assembly. Moreover, we found that Skb15, the Mak11 homologue in Schizosaccharomyces pombe, also associated with preribosomes and affected 60S biogenesis in fission yeast. It is thus likely that the previously observed phenotypes for MAK11 homologues in other eukaryotes are secondary to the main function of these proteins in ribosome formation.


Asunto(s)
Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Homología de Secuencia , Secuencia de Aminoácidos , Nucléolo Celular/metabolismo , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Proteínas Mutantes/metabolismo , Mutación/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Precursores del ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Schizosaccharomyces pombe/química , Quinasas p21 Activadas
15.
Mol Cell Biol ; 27(19): 6581-92, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17646390

RESUMEN

Allelic forms of DRG1/AFG2 confer resistance to the drug diazaborine, an inhibitor of ribosome biogenesis in Saccharomyces cerevisiae. Our results show that the AAA-ATPase Drg1 is essential for 60S maturation and associates with 60S precursor particles in the cytoplasm. Functional inactivation of Drg1 leads to an increased cytoplasmic localization of shuttling pre-60S maturation factors like Rlp24, Arx1, and Tif6. Surprisingly, Nog1, a nuclear pre-60S factor, was also relocalized to the cytoplasm under these conditions, suggesting that it is a previously unsuspected shuttling preribosomal factor that is exported with the precursor particles and very rapidly reimported. Proteins that became cytoplasmic under drg1 mutant conditions were blocked on pre-60S particles at a step that precedes the association of Rei1, a later-acting preribosomal factor. A similar cytoplasmic accumulation of Nog1 and Rlp24 in pre-60S-bound form could be seen after overexpression of a dominant-negative Drg1 variant mutated in the D2 ATPase domain. We conclude that the ATPase activity of Drg1 is required for the release of shuttling proteins from the pre-60S particles shortly after their nuclear export. This early cytoplasmic release reaction defines a novel step in eukaryotic ribosome maturation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Citoplasma/metabolismo , Precursores de Proteínas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Adenosina Trifosfatasas/genética , Transporte Biológico/fisiología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Iniciación de Péptidos/genética , Factores de Iniciación de Péptidos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Precursores de Proteínas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Ribosómicas , Subunidades Ribosómicas Grandes de Eucariotas/genética , Ribosomas/química , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
16.
Nucleic Acids Res ; 36(15): 4988-99, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18658244

RESUMEN

During the highly conserved process of eukaryotic ribosome formation, RNA follows a maturation path with well-defined, successive intermediates that dynamically associate with many pre-ribosomal proteins. A comprehensive description of the assembly process is still lacking. To obtain data on the timing and order of association of the different pre-ribosomal factors, a strategy consists in the use of pre-ribsomal particles isolated from mutants that block ribosome formation at different steps. Immunoblots, inherently limited to only a few factors, have been applied to evaluate the accumulation or decrease of pre-ribosomal intermediates under mutant conditions. For a global protein-level description of different 60S ribosomal subunit maturation intermediates in yeast, we have adapted a method of in vivo isotopic labelling and mass spectrometry to study pre-60S complexes isolated from strains in which rRNA processing was affected by individual depletion of five factors: Ebp2, Nog1, Nsa2, Nog2 or Pop3. We obtained quantitative data for 45 distinct pre-60S proteins and detected coordinated changes for over 30 pre-60S factors in the analysed mutants. These results led to the characterisation of the composition of early, intermediate and late pre-ribosomal complexes, specific for crucial maturation steps during 60S assembly in eukaryotes.


Asunto(s)
Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , GTP Fosfohidrolasas , Marcaje Isotópico , Espectrometría de Masas , Mutación , Proteínas Ribosómicas/clasificación , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología
17.
RNA Biol ; 6(5): 563-74, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19838078

RESUMEN

As evidenced from mammalian cells the eukaryotic translation initiation factor eIF4G has a putative role in nuclear RNA metabolism. Here we investigate whether this role is conserved in the yeast Saccharomyces cerevisiae. Using a combination of in vitro and in vivo methods, we show that, similar to mammalian eIF4G, yeast eIF4G homologues, Tif4631p and Tif4632p, are present both in the nucleus and the cytoplasm. We show that both eIF4G proteins interact efficiently in vitro with UsnRNP components of the splicing machinery. More specifically, Tif4631p and Tif4632p interact efficiently with U1 snRNA in vitro. In addition, Tif4631p and Tif4632p associate with protein components of the splicing machinery, namely Snu71p and Prp11p. To further delineate these interactions, we map the regions of Tif4631p and Tif4632p that are important for the interaction with Prp11p and Snu71p and we show that addition of these regions to splicing reactions in vitro has a dominant inhibitory effect. The observed interactions implicate eIF4G in aspects of pre-mRNA processing. In support of this hypothesis, deletion of one of the eIF4G isoforms results in accumulation of un-spliced precursors for a number of endogenous genes, in vivo. In conclusion these observations are suggestive of the involvement of yeast eIF4G in pre-mRNA metabolism.


Asunto(s)
Factor 4F Eucariótico de Iniciación/metabolismo , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Nuclear Pequeño/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Factor 4G Eucariótico de Iniciación , Empalmosomas/metabolismo
18.
Nat Struct Mol Biol ; 26(4): 275-280, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30911188

RESUMEN

Messenger RNA (mRNA) homeostasis represents an essential part of gene expression, in which the generation of mRNA by RNA polymerase is counter-balanced by its degradation by nucleases. The conserved 5'-to-3' exoribonuclease Xrn1 has a crucial role in eukaryotic mRNA homeostasis by degrading decapped or cleaved mRNAs post-translationally and, more surprisingly, also co-translationally. Here we report that active Xrn1 can directly and specifically interact with the translation machinery. A cryo-electron microscopy structure of a programmed Saccharomyces cerevisiae 80S ribosome-Xrn1 nuclease complex reveals how the conserved core of Xrn1 enables binding at the mRNA exit site of the ribosome. This interface provides a conduit for channelling of the mRNA from the ribosomal decoding site directly into the active center of the nuclease, thus separating mRNA decoding from degradation by only 17 ± 1 nucleotides. These findings explain how rapid 5'-to-3' mRNA degradation is coupled efficiently to its final round of mRNA translation.


Asunto(s)
Exorribonucleasas/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Microscopía por Crioelectrón , Exorribonucleasas/genética , Exorribonucleasas/ultraestructura , ARN Mensajero/metabolismo , Ribosomas/genética , Ribosomas/ultraestructura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestructura
19.
Bioinformatics ; 23(3): 394-6, 2007 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-17127678

RESUMEN

UNLABELLED: We have implemented a graph layout algorithm that exposes Gene Ontology (GO) class structure on the network nodes. It can be used in conjunction with BiNGO plug-in to Cytoscape, which finds the GO categories over-represented in a given network. Our plug-in, named GOlorize, first highlights the class members with category-specific color-coding and then constructs an enhanced visualization of the network using a class-directed layout algorithm. AVAILABILITY: http://www.cytoscape.org/plugins2.php. SUPPLEMENTARY INFORMATION: Installation instructions and tutorial at http://www.cytoscape.org/plugins/GOlorize/GOlorizeUserGuide.pdf.


Asunto(s)
Gráficos por Computador , Bases de Datos de Proteínas , Modelos Biológicos , Proteoma/metabolismo , Transducción de Señal/fisiología , Programas Informáticos , Interfaz Usuario-Computador , Algoritmos , Color , Simulación por Computador , Almacenamiento y Recuperación de la Información/métodos
20.
Mol Cell Biol ; 25(21): 9269-82, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16227579

RESUMEN

Prp43p is a putative helicase of the DEAH family which is required for the release of the lariat intron from the spliceosome. Prp43p could also play a role in ribosome synthesis, since it accumulates in the nucleolus. Consistent with this hypothesis, we find that depletion of Prp43p leads to accumulation of 35S pre-rRNA and strongly reduces levels of all downstream pre-rRNA processing intermediates. As a result, the steady-state levels of mature rRNAs are greatly diminished following Prp43p depletion. We present data arguing that such effects are unlikely to be solely due to splicing defects. Moreover, we demonstrate by a combination of a comprehensive two-hybrid screen, tandem-affinity purification followed by mass spectrometry, and Northern analyses that Prp43p is associated with 90S, pre-60S, and pre-40S ribosomal particles. Prp43p seems preferentially associated with Pfa1p, a novel specific component of pre-40S ribosomal particles. In addition, Prp43p interacts with components of the RNA polymerase I (Pol I) transcription machinery and with mature 18S and 25S rRNAs. Hence, Prp43p might be delivered to nascent 90S ribosomal particles during pre-rRNA transcription and remain associated with preribosomal particles until their final maturation steps in the cytoplasm. Our data also suggest that the ATPase activity of Prp43p is required for early steps of pre-rRNA processing and normal accumulation of mature rRNAs.


Asunto(s)
Adenosina Trifosfatasas/genética , ARN Helicasas/genética , Precursores del ARN/genética , ARN de Hongos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Adenosina Trifosfatasas/metabolismo , ARN Helicasas DEAD-box , Espectrometría de Masas , Empalme de Proteína , ARN Helicasas/metabolismo , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN de Hongos/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA