Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
PLoS One ; 19(2): e0297429, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38335168

RESUMEN

The egg yolk of the goose is rich in lipids, proteins and minerals, which is the main source of nutrition during the goose embryogenesis. Actually, the magnitude and variety of nutrients in yolk are dynamically changed to satisfy the nutritional requirements of different growth and development periods. The yolk sac membrane (YSM) plays a role in metabolizing and absorbing nutrients from the yolk, which are then consumed by the embryo or extra-fetal tissues. Therefore, identification of metabolites in egg yolk can help to reveal nutrient requirement in goose embryo. In this research, to explore the metabolite changes in egg yolk at embryonic day (E) 7, E12, E18, E23, and E28, we performed the assay using ultra-high performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS). The findings showed that E7 and E12, E23 and E28 were grouped together, while E18 was significantly separated from other groups, indicating the changes of egg yolk development and metabolism. In total, 1472 metabolites were identified in the egg yolk of Zhijin white goose, and 636 differential metabolites (DMs) were screened, among which 264 were upregulated and 372 were downregulated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the DMs were enriched in the biosynthesis and metabolism of amino acids, digestion and absorption of protein, citrate cycle (TCA cycle), aminoacyl-tRNA biosynthesis, phosphotransferase system (PTS), mineral absorption, cholesterol metabolism and pyrimidine metabolism. Our study may provide new ideas for improving prehatch embryonic health and nutrition.


Asunto(s)
Cromatografía Líquida con Espectrometría de Masas , Espectrometría de Masas en Tándem , Animales , Gansos , Cromatografía Liquida , Desarrollo Embrionario , Proteínas/metabolismo , Metabolómica , Yema de Huevo/metabolismo , Minerales/análisis , Saco Vitelino
2.
Genes (Basel) ; 14(7)2023 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-37510239

RESUMEN

Reproductive competence in male mammals depends on testicular function. Testicular development and spermatogenesis in goats involve highly complex physiological processes. In this study, six testes were, respectively, obtained from each age group, immature (1 month), sexually mature (6 months) and physically mature (12 months old) Qianbei Ma goats. RNA-Seq was performed to assess testicular mRNA expression in Qianbei Ma goats at different developmental stages. Totally, 18 libraries were constructed to screen genes and pathways involved in testis development and spermatogenesis. Totally, 9724 upregulated and 4153 downregulated DEGs were found between immature (I) and sexually mature (S) samples; 7 upregulated and 3 downregulated DEGs were found between sexually mature (S) and physically mature (P) samples, and about 4% of the DEGs underwent alternative splicing events between I and S. Select genes were assessed by qRT-PCR, corroborating RNA-Seq findings. The detected genes have key roles in multiple developmental stages of goat testicular development and spermatogenesis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to determine differentially expressed genes (DEGs). GO analysis revealed DEGs between S and P contributed to "reproduction process", "channel activity" and "cell periphery part" between I and S, and in "ion transport process", "channel activity" and "transporter complex part". KEGG analysis suggested the involvement of "glycerolipid metabolism", "steroid hormone biosynthesis" and "MAPK signaling pathway" in testis development and spermatogenesis. Genes including IGF1, TGFB1, TGFBR1 and EGFR may control the development of the testis from immature to sexually mature, which might be important candidate genes for the development of goat testis. The current study provides novel insights into goat testicular development and spermatogenesis.


Asunto(s)
Testículo , Transcriptoma , Animales , Masculino , Testículo/metabolismo , Cabras/genética , Cabras/metabolismo , Espermatogénesis/genética , Perfilación de la Expresión Génica
3.
Front Vet Sci ; 10: 1276673, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38089704

RESUMEN

Cathepsin S (CTSS) is a member of the cysteine protease family closely related to reproductive regulation in goats. However, its effect on litter size in goats remains unclear. In this study, the relationship between CTSS gene polymorphisms and litter size was revealed by analyzing the DNA sequence and mRNA expression of CTSS in the gonadal axis of Qianbei Ma goats. In addition, bioinformatics methods were used to evaluate the effect of non-synonymous mutations on CTSS protein structure and function. CTSS was expressed in all parts of the gonadal axis of Qianbei Ma goats, with the highest expression in the uterus in the multi-lamb group and in the fallopian tube in the single-lamb group. The sequencing results showed that four SNPs in CTSS, including g.7413C → T, g.8816A → T, g.9191 T → G and g.10193G → A, were significantly correlated with litter size (p < 0.05). All four analyzed mutation sites were in strong linkage disequilibrium (r2 > 0.33, D' > 0.70). Additionally, the haplotype Hap1/2 had a significantly higher frequency than the other haplotypes (p < 0.05). g.7413C → T and g.8816A → T were non-synonymous mutations. The g.7413C → T mutation resulted in the substitution of serine 161 of the CTSS protein with phenylalanine (p.S161F), and the g.8816A → T mutation resulted in the substitution of aspartate 219 with tyrosine (p.N219Y). p.S161F was highly conserved across 13 species and that p.N219Y was relatively conserved in cloven-hoofed species. Mutations at two sites changed the local conformation of the CTSS protein, reduced its stability, and affected its function and goat breed evolution. These findings confirm that CTSS affects the lambing traits of goats and provide a theoretical basis for the regulatory mechanism of CTSS in affecting litter size.

4.
Environ Sci Pollut Res Int ; 30(38): 89676-89689, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37454381

RESUMEN

Nanoscale zero-valent iron (nZVI) has a high removal affinity toward arsenic (As). However, the agglomeration of nZVI reduces the removal efficiency of As and, thus, limit its application. In this study, we report an environmentally friendly novel composite of Chlorella vulgaris-supported nanoscale zero-valent iron (abbreviated as CV-nZVI) that exhibits a fast and efficient removal of As(III) from As-contaminated water. Scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS), X-ray diffractometry (XRD), attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR), and X-ray photoelectron spectroscopy (XPS) were used to characterize and analyze the CV-nZVI. These results indicated that the stabilization effect of C. vulgaris reduced the nZVI agglomeration and enhanced the reactivity of nZVI. The experiments showed a removal efficiency of 99.11% for As(III) at an optimum pH of 7.0. The adsorption kinetics and isotherms followed the pseudo-second-order kinetic model and Langmuir adsorption isotherm with the superior maximum adsorption capacities of 34.11 mg/g for As(III). The FTIR showed that the As(III) was adsorbed on the CV-nZVI surface by complexation reaction, and XPS indicated that oxidation reaction was also involved. After five reuse cycles, the removal efficiency of As(III) by CV-nZVI was 32.93%, suggesting that the CV-nZVI had some reusability and regeneration. Overall, this work provides a practical and highly efficient approach for As remediation in As-contaminated water, and simultaneously resolves the agglomeration problems of nZVI nanoparticles.


Asunto(s)
Arsénico , Chlorella vulgaris , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Hierro/química , Adsorción , Agua
5.
Front Vet Sci ; 10: 1167758, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180060

RESUMEN

Circular RNAs (circRNAs) play an important role in regulating the mammalian reproductive system, especially testicular development and spermatogenesis. However, their functions in testicular development and spermatogenesis in the Qianbei Ma goat, the Guizhou endemic breed are still unclear. In this study, tissue sectioning and circRNAs transcriptome analysis were conducted to compare the changes of morphology and circular RNAs gene expression profile at four different developmental stages (0Y, 0-month-old; 6Y, 6-month-old; 12Y, 12-month-old; 18Y, 18-month-old). The results showed that the circumferences and area of the seminiferous tubule gradually increased with age, and the lumen of the seminiferous tubule in the testis differentiated significantly. 12,784 circRNAs were detected from testicular tissues at four different developmental stages by RNA sequencing, and 8,140 DEcircRNAs (differentially expressed circRNAs) were found in 0Y vs. 6Y, 6Y vs. 12Y, 12Y vs. 18Y and 0Y vs. 18Y, 0Y vs. 12Y, 6Y vs. 18Y Functional enrichment analysis of the source genes showed that they were mainly enriched in testicular development and spermatogenesis. In addition, the miRNAs and mRNAs associated with DECircRNAs in 6 control groups were predicted by bioinformatics, and 81 highly expressed DECircRNAs and their associated miRNAs and mRNAs were selected to construct the ceRNA network. Through functional enrichment analysis of the target genes of circRNAs in the network, some candidate circRNAs related to testicular development and spermatogenesis were obtained. Such as circRNA_07172, circRNA_04859, circRNA_07832, circRNA_00032 and circRNA_07510. These results will help to reveal the mechanism of circRNAs in testicular development and spermatogenesis, and also provide some guidance for goat reproduction.

6.
Sci Rep ; 12(1): 15936, 2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36153360

RESUMEN

In this research, kaolinite was used to investigate the comparative adsorption of copper, lead, and zinc ions through batch control experiments and first principles calculations. Different adsorption conditions were considered as the effect of solution acidity, initial concentration of ions, and contact shaking time. The adsorption system isotherms and kinetic studies were better agreed with the Langmuir and pseudo-second-order kinetic models. They reached adsorption equilibrium within two hours and maximum adsorption capacities of Zn(II), Pb(II), and Cu(II) on kaolinite were 15.515, 61.523, and 44.659 mg/g, respectively. In addition, the microscopic adsorption changes of Zn(II), Pb(II), and Cu(II) on kaolinite were characterized using X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy. The results showed that Zn(II), Pb(II), and Cu(II) were most likely to be adsorbed on the kaolinite surface. Furthermore, the adsorption mechanism of [Zn(OH)]+, [Pb(OH)]+, and [Cu(OH)]+ on the kaolinite (001) surface was systematically studied through first-principles density functional calculations. The adsorption characteristics of different ions were evaluated by calculating the adsorption energy of the equilibrium adsorption configuration, state density, and electron density. The adsorption energy of [Zn(OH)]+, [Pb(OH)]+, and [Cu(OH)]+ were - 0.49, - 1.17, and - 1.64 eV, respectively. The simulation results indicated that new hybrid orbitals were formed between the metal ions and O atoms on the kaolinite surface, with electron transfer occurring the adsorption processes. The charge transfer direction for [Pb(OH)]+ was opposite those for [Zn(OH)]+ and [Cu(OH)]+. [Zn(OH)]+ was more likely to form polydentate complexes with hydroxyl groups on the kaolinite surface than [Cu(OH)]+ and [Pb(OH)]+. This work further elucidated the interaction mechanism between the adsorption systems and provided fundamental theoretical support for the structural modification and optimization of kaolinite, such as increasing the layer spacing of kaolinite and introducing other active groups on its surface to improve the adsorption capacity of heavy metal ions in water treatment and soil remediation.

7.
Sci Rep ; 12(1): 95, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34997099

RESUMEN

Phosphogypsum (PG) is a massive industrial solid waste. In this paper, PG was purified by flotation method, and α-hemihydrate gypsum (α-HH) was prepared by the autoclaving method. The morphology of α-HH was adjusted by adding different doses of Maleic acid and Aluminium sulfate. The results showed that after flotation purification, the impurity content in PG was significantly reduced, the soluble phosphorus content decreased from 0.48 to 0.07%, the PG purity increased from 73.12 to 94.37%, and the PG whiteness risen from 19.4 to 40.5. Then the performance of α-HH prepared from PG before and after purification was compared. Fixing the amount of aluminium sulfate at 0.2 wt%, the reaction temperature at 140 °C, and the reaction time at 120 min, the average length/diameter ratio of α-HH crystals decreased from 7.2 to 0.6 as the amount of Maleic acid increased from 0 to 0.17 wt%. When the amount of Maleic acid was 0.13 wt%, the α-hemihydrate gypsum reached the best mechanical properties. The mechanical strength of high strength gypsum prepared from PG concentrate was significantly better than that of raw PG, indicating that flotation purification can effectively improve the performance of PG. In this study, a new method of PG purification and resource utilization was proposed.

8.
Genes (Basel) ; 13(12)2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36553574

RESUMEN

The purpose of this paper was to investigate the effects of N-acetylcysteine (NAC) on the proliferation, hormone secretion, and mRNA expression profiles of ovarian granulosa cells (GCs) in vitro. A total of 12 ovaries from 6 follicular-stage goats were collected for granulosa cell extraction. The optimum concentration of NAC addition was determined to be 200 µM via the Cell Counting Kit 8 (CCK-8) method. Next, GCs were cultured in a medium supplemented with 200 µM NAC (200 µM NAC group) and 0 µ M NAC (control group) for 48 h. The effects of 200 µM NAC on the proliferation of granulosa cells and hormones were studied by 5-ethynyl-2'-deoxyuridine (EdU) assay and enzyme-linked immunosorbent assay (ELISA). mRNA expression was analyzed by transcriptome sequencing. The results indicate that 200 µM NAC significantly increased cell viability and the proportion of cells in the S phase but promoted hormone secretion to a lesser degree. Overall, 122 differentially expressed genes (DEGs) were identified. A total of 51 upregulated and 71 downregulated genes were included. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that the most DEGs were enriched in terms of cell growth regulation, cell growth, neuroactive ligand-receptor interaction, cytokine-cytokine receptor interaction, the cAMP-signaling pathway, and the Wnt-signaling pathway. Seven genes related to granulosa cell proliferation were screened, IGFBP4, HTRA4, SST, SSTR1, WISP1, DAAM2, and RSPO2. The above results provide molecular theoretical support for NAC as a feed additive to improve follicle development and improve reproductive performance in ewes.


Asunto(s)
Acetilcisteína , Transcriptoma , Femenino , Animales , Ovinos , Acetilcisteína/metabolismo , Cabras/genética , Células de la Granulosa/metabolismo , Proliferación Celular , Hormonas , ARN Mensajero/metabolismo
9.
Animals (Basel) ; 12(18)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36139290

RESUMEN

N acetylcysteine (NAC) affects antioxidation and reactive oxygen species scavenging in the body and thereby promotes embryonic development and implantation and inhibits inflammation. The mechanism through which NAC regulates reproductive performance in the uteri of goats during early gestation remains unclear. In this study, the treatment group was fed 0.07% NAC for the first 35 days of gestation, whereas the control group received no NAC supplementation. The regulatory genes and key pathways associated with goat reproductive performance under NAC supplementation were identified by RNA-seq. RT-qPCR was used to verify the sequencing results and subsequently construct tissue expression profiles of the relevant genes. RNA-seq identified 19,796 genes coexpressed in the control and treatment groups and 1318 differentially expressed genes (DEGs), including 787 and 531 DEGs enriched in the treatment and control groups, respectively. A GO analysis revealed that the identified genes mapped to pathways such as cell activation, cytokine production, cell mitotic processes, and angiogenesis, and a KEGG enrichment analysis showed that the DEGs were enriched in pathways associated with reproductive regulation, immune regulation, resistance to oxidative stress, and cell adhesion. The RT-qPCR analysis showed that BDNF and CSF-1 were most highly expressed in the uterus, that WIF1 and ESR2 showed low expression in the uterus, and that CTSS, PTX3, and TGFß-3 were most highly expressed in the oviduct, which indicated that these genes may be directly or indirectly involved in the modulation of reproduction in early-gestation goats. These findings provide fundamental data for the NAC-mediated modulation of the reproductive performance of goats during early gestation.

10.
Animals (Basel) ; 12(18)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36139298

RESUMEN

Dietary supplementation with N-acetyl-L-cysteine (NAC) may support early pregnancy regulation and fertility in female animals. The purpose of this study was to investigate the effect of supplementation with 0.07% NAC on the expression of the uterine keratin gene and protein in Qianbei-pockmarked goats during early pregnancy using tandem mass spectrometry (TMT) relative quantitative proteomics. The results showed that there were significant differences in uterine keratin expression between the experimental group (NAC group) and the control group on day 35 of gestation. A total of 6271 proteins were identified, 6258 of which were quantified by mass spectrometry. There were 125 differentially expressed proteins (DEPs), including 47 upregulated and 78 downregulated proteins, in the NAC group. Bioinformatic analysis showed that these DEPs were mainly involved in the transport and biosynthesis of organic matter and were related to the binding of transition metal ions, DNA and proteins and the catalytic activity of enzymes. They were enriched in the Jak-STAT signalling pathway, RNA monitoring pathway, amino acid biosynthesis, steroid biosynthesis and other pathways that may affect the early pregnancy status of does through different pathways and thus influence early embryonic development. Immunohistochemistry, real-time quantitative PCR and Western blotting were used to verify the expression and localization of glial fibrillary acidic protein (GFAP) and pelota mRNA surveillance and ribosomal rescue factor (PELO) in uterine horn tissue. The results showed that both PELO and GFAP were localized to endometrial and stromal cells, consistent with the mass spectrometry data at the transcriptional and translational levels. Moreover, NAC supplementation increased the levels of the reproductive hormones follicle-stimulating hormone (FSH), luteinizing hormone (LH), oestradiol (E2), progesterone (P4), superoxide dismutase (SOD), glutamate peroxidase (GSH-Px) and nitric oxide (NO) in the serum of does. These findings provide new insight into the mechanism by which NAC regulates early pregnancy and embryonic development in goats.

11.
Artículo en Inglés | MEDLINE | ID: mdl-33638085

RESUMEN

Permanently submerged sediment samples (SS) were collected in the center stream of eleven tributaries of Changjiang (Yangtze River) and at eight confluence zones in the Three Gorges Reservoir (TGR) in May and December of 2017. The work showed that aqua regia digestion is a simpler, more reliable and robust method compared to total digestion with hydrofluoric acid (HF) for the determination of trace metals (TMs) in sediment for risk assessment purpose. Our study revealed a remarkable accumulation of TMs at the confluence zones and a trend of their gradual increase toward this zone. The presence of iron and manganese (oxy)hydroxides combined with hydrodynamic conditions created by the Three Gorges Dam (TGD) and its operation are believed to play a crucial role. This work also found that concentrations of [Formula: see text] in May sediment were significantly higher than those in December, which could have been caused by both the cyclic hydrodynamic conditions and the warmer water. TOC and TP were both very low in the sediment. Although TN was 2 times higher than the Lowest Effect Level suggested by the Ontario Ministry of Environment, it is uncertain if it reflects a natural background level or due to anthropogenic activities. A critical discussion is made by comparing the conclusions obtained when using different TMs risk assessment models. Necessary precautions are highly recommended when performing this exercise. In this study, no significant risk from either TMs or nutrients was identified.

12.
J Colloid Interface Sci ; 315(2): 569-79, 2007 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-17764685

RESUMEN

Coalescence times for air bubbles rising through hexadecane to an air-hexadecane interface are measured and compared with an analysis based upon our previous extension of continuum mechanics to the nanoscale [J.C. Slattery, E.-S. Oh, K. Fu, Chem. Eng. Sci. 59 (2004) 4621-4635] with the assumption of retarded dispersion forces. The relation between the retarded and non-retarded Hamaker constants proposed by Görner and Pich [J. Aerosol Sci. 20 (7) (1989) 735-747] is tested for the first time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA