Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Pharmazie ; 75(8): 395-400, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32758340

RESUMEN

It has been shown that Acori tatarinowii rhizoma (ATR) extract can improve cognitive functions in Alzheimer Diseas (AD) patients or animal models. In this study, we have examined the activity of ATR in 3×Tg-AD model mice with different comprehensive behavioral tests like the Morris water maze and Y-maze test assay for behavior. Moreover, we performed LFB staining for myelin determination in the AD model mouse. By analyzing different pathways, we determined key proteins that are beneficial for ameliorating AD syndrome in the mouse. Periluminally, ATR treatment improved the learning and memory ability that was determined by comprehensive behavioral tests. Moreover, treatment reduces the p-Tau accumulation in the 3×Tg-AD mouse and the level of p-Tau accumulation was at per with the wildtype control mouse and improves the myelin lining in 3×Tg-AD mouse. In conclusion, our results indicate that ATR-treatment can improve the learning ability of AD model mice and the hyperphosphorylation of Tau protein was decreased. ATR can protect myelin lining from damage in AD syndrome.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Conducta Animal/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Vaina de Mielina/efectos de los fármacos , Enfermedad de Alzheimer/fisiopatología , Animales , Modelos Animales de Enfermedad , Aprendizaje/efectos de los fármacos , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Transgénicos , Vaina de Mielina/patología , Fosforilación , Rizoma , Proteínas tau/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-33273954

RESUMEN

Podocytes are a special type of differentiated epithelial cells that maintain the glomerular filtration barrier in the kidney. Injury or damages in podocytes can cause kidney-related disorders, like CKD. The injury or dysfunction of podocytes can occur by different metabolic disorders. Due to the severity and complexity of podocyte injuries, this state is considered as a serious health issue worldwide. Here, we examined and addressed the efficacy of an alternative Chinese medicine, Shen Qi Wan (SQW), on podocyte-related kidney injury. We evaluated the role and mechanism of action of SQW in podocyte injury. We observed that SQW significantly reduced 24-hour urinary protein and blood urea nitrogen levels and alleviated the pathological damage caused by adenine. Moreover, SQW significantly decreased the expression of nephrin and increased the expression of WT1 and AQP1 in the kidney of mice treated with adenine. We observed that SQW did not effectively reduce the high level of proteinuria in AQP1-/- mice indicating the prominent role of AQP1 in the SQW-ameliorating pathway. Transmission electron microscopy (TEM) images indicated the food processes effacement in AQP1-/- mice were not lessened by SQW. In conclusion, podocyte injury could alter the pathological nature of the kidney, and SQW administration relieves the nature of pathogenesis by activating AQP1.

3.
Med Sci Monit Basic Res ; 26: e924203, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32475979

RESUMEN

BACKGROUND Acori Tatarinowii Rhizoma (ATR), a traditional Chinese herbal medicine, is used to treat Alzheimer's disease (AD), which is a worldwide degenerative brain disease. The aim of this study was to identify the potential mechanism and molecular targets of ATR in AD by using network pharmacology. MATERIAL AND METHODS The potential targets of the active ingredients of ATR were predicted by PharmMapper, and the targets of Alzheimer's disease were searched by DisGeNET. All screened genes were intersected to obtain potential targets for the active ingredients of ATR. The protein-protein interaction network of possible targets was established by STRING, GO Enrichment, and KEGG pathway enrichment analyses using the Annotation of DAVID database. Next, Cytoscape was used to build the "components-targets-pathways" networks. Additionally, a "disease-component-gene-pathways" network was constructed and verified by molecular docking methods. In addition, the active constituents ß-asarone and ß-caryophyllene were used to detect Aß1₋42-mediated SH-SY5Y cells, and mRNA expression levels of APP, Tau, and core target genes were estimated by qRT-PCR. RESULTS The results showed that the active components of ATR participate in related biological processes such as cancer, inflammation, cellular metabolism, and metabolic pathways and are closely related to the 13 predictive targets: ESR1, PPARG, AR, CASP3, JAK2, MAPK14, MAP2K1, ABL1, PTPN1, NR3C1, MET, INSR, and PRKACA. The ATR active components of ß-caryophyllene significantly reduced the mRNA expression levels of APP, TAU, ESR1, PTPN1, and JAK2. CONCLUSIONS The targets and mechanism corresponding to the active ingredients of ATR were investigated systematically, and novel ideas and directions were provided to further study the mechanism of ATR in AD.


Asunto(s)
Acorus/química , Acorus/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , China , Medicina Tradicional China/métodos , Simulación del Acoplamiento Molecular , Extractos Vegetales/farmacología , Mapas de Interacción de Proteínas , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA