Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 534
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Trends Biochem Sci ; 49(3): 192-194, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923611

RESUMEN

Plants undergo translational reprogramming when they are under attack by pathogens. Xiang et al. recently revealed that plant helicases induced by pathogen recognition unwind RNA hairpins upstream of the main open reading frames (mORFs), thus allowing ribosomes to bypass the upstream ORFs (uORFs) and translate downstream defense proteins, a mechanism that is also found in mammals.


Asunto(s)
Proteínas de Plantas , Biosíntesis de Proteínas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ribosomas/metabolismo , ARN/metabolismo , ADN Helicasas/metabolismo , Sistemas de Lectura Abierta
2.
Trends Biochem Sci ; 47(10): 819-821, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35792034

RESUMEN

The plant hormone salicylic acid (SA) receptor NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) plays a critical role for plant defense against biotrophic and hemi-biotrophic pathogens. In a milestone paper, Kumar, Zavaliev, Wu et al. unraveled the structural basis for the assembly of an enhanceosome by NPR1 in activating the expression of plant defense genes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Animales , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Aves/metabolismo , Plantas/metabolismo , Ácido Salicílico/metabolismo
3.
Plant Cell ; 35(5): 1593-1616, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36695476

RESUMEN

High salinity, an adverse environmental factor affecting about 20% of irrigated arable land worldwide, inhibits plant growth and development by causing oxidative stress, damaging cellular components, and disturbing global metabolism. However, whether and how reactive oxygen species disturb the metabolism of salt-stressed plants remain elusive. Here, we report that salt-induced hydrogen peroxide (H2O2) inhibits the activity of plastid triose phosphate isomerase (pdTPI) to promote methylglyoxal (MG) accumulation and stimulates the sulfenylation of pdTPI at cysteine 74. We also show that MG is a key factor limiting the plant growth, as a decrease in MG levels completely rescued the stunted growth and repressed salt stress tolerance of the pdtpi mutant. Furthermore, targeting CATALASE 2 into chloroplasts to prevent salt-induced overaccumulation of H2O2 conferred salt stress tolerance, revealing a role for chloroplastic H2O2 in salt-caused plant damage. In addition, we demonstrate that the H2O2-mediated accumulation of MG in turn induces H2O2 production, thus forming a regulatory loop that further inhibits the pdTPI activity in salt-stressed plants. Our findings, therefore, illustrate how salt stress induces MG production to inhibit the plant growth.


Asunto(s)
Peróxido de Hidrógeno , Piruvaldehído , Peróxido de Hidrógeno/metabolismo , Piruvaldehído/metabolismo , Estrés Salino , Estrés Oxidativo , Plantas/metabolismo , Cloroplastos/metabolismo , Estrés Fisiológico
4.
J Biol Chem ; 300(9): 107627, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39098536

RESUMEN

Staphylococcus aureus expresses three high-affinity neutrophil serine protease (NSP) inhibitors known as the extracellular adherence protein domain (EAPs) proteins. Whereas EapH1 and EapH2 are comprised of a single EAP domain, the modular extracellular adherence protein (Eap) from S. aureus strain Mu50 consists of four EAP domains. We recently reported that EapH2 can simultaneously bind and inhibit cathepsin-G (CG) and neutrophil elastase (NE), which are the two most abundant NSPs. This unusual property of EapH2 arises from independent CG and NE-binding sites that lie on opposing faces of its EAP domain. Here we used X-ray crystallography and enzyme assays to show that all four individual domains of Eap (i.e. Eap1, Eap2, Eap3, and Eap4) exhibit an EapH2-like ability to form ternary complexes with CG and NE that inhibit both enzymes simultaneously. We found that Eap1, Eap2, and Eap3 have similar functional profiles insofar as NSP inhibition is concerned but that Eap4 displays an unexpected ability to inhibit two NE enzymes simultaneously. Using X-ray crystallography, we determined that this second NE-binding site in Eap4 arises through the same region of its EAP domain that also comprises its CG-binding site. Interestingly, small angle X-ray scattering data showed that stable tail-to-tail dimers of the NE/Eap4/NE ternary complex exist in solution. This arrangement is compatible with NSP-binding at all available sites in a two-domain fragment of Eap. Together, our work implies that Eap is a polyvalent inhibitor of NSPs. It also raises the possibility that higher-order structures of NSP-bound Eap may have unique functional properties.

5.
Small ; : e2406359, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225380

RESUMEN

Anode-free lithium-metal batteries (AFLMBs) are desirable candidates for achieving high-energy-density batteries, while severe active Li+ loss and uneven Li plating/stripping behavior impede their practical application. Herein, a trilaminar LS-Cu (LiCPON + Si/C-Cu) current collector is fabricated by radio frequency magnetron sputtering, including a Si/C hybrid lithiophilic layer and a supernatant carbon-incorporated lithium phosphorus oxynitride (LiCPON) solid-state electrolyte layer. Joint experimental and computational characterizations and simulations reveal that the LiCPON solid-state electrolyte layer can decompose into an in situ stout ion-transport-promoting protective layer, which can not only regulate homogeneous Li plating/stripping behavior but also inhibit the pulverization and deactivation of Si/C hybrid lithiophilic layer. When combined with surface prelithiated Li1.2Ni0.13Co0.13Mn0.54O2 (Preli-LRM) cathode, the Preli-LRM||LS-Cu full cell delivers 896.1 Wh kg-1 initially and retains 354.1 Wh kg-1 after 50 cycles. This strategy offers an innovative design of compensating for active Li+ loss and inducing uniform Li plating/stripping behavior simultaneously for the development of AFLMBs.

6.
Glob Chang Biol ; 30(1): e17006, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37909670

RESUMEN

Uncovering the mechanisms that lead to Amazon forest resilience variations is crucial to predict the impact of future climatic and anthropogenic disturbances. Here, we apply a previously used empirical resilience metrics, lag-1 month temporal autocorrelation (TAC), to vegetation optical depth data in C-band (a good proxy of the whole canopy water content) in order to explore how forest resilience variations are impacted by human disturbances and environmental drivers in the Brazilian Amazon. We found that human disturbances significantly increase the risk of critical transitions, and that the median TAC value is ~2.4 times higher in human-disturbed forests than that in intact forests, suggesting a much lower resilience in disturbed forests. Additionally, human-disturbed forests are less resilient to land surface heat stress and atmospheric water stress than intact forests. Among human-disturbed forests, forests with a more closed and thicker canopy structure, which is linked to a higher forest cover and a lower disturbance fraction, are comparably more resilient. These results further emphasize the urgent need to limit deforestation and degradation through policy intervention to maintain the resilience of the Amazon rainforests.


Asunto(s)
Bosque Lluvioso , Resiliencia Psicológica , Efectos Antropogénicos , Conservación de los Recursos Naturales/métodos , Bosques
7.
Protein Expr Purif ; 223: 106551, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38997076

RESUMEN

Hyaluronidase, an enzyme that degrades hyaluronic acid (HA), is utilized in clinical settings to facilitate drug diffusion, manage extravasation, and address injection-related complications linked to HA-based fillers. In this study, a novel hyaluronate lyase EsHyl8 was cloned, expressed, and characterized from Escherichia sp. A99 of human intestinal origin. This lyase belongs to polysaccharide lyase (PL) family 8, and showed specific activity towards HA. EsHyl8 exhibited optimal degradation at 40 °C and pH 6.0. EsHyl8 exhibited a high activity of 376.32 U/mg among hyaluronidases of human gut microorganisms. EsHyl8 was stable at 37 °C and remained about 70 % of activity after incubation at 37 °C for 24 h, demonstrating excellent thermostability. The activity of EsHyl8 was inhibited by Zn2+, Cu2+, Fe3+, and SDS. EsHyl8 was an endo-type enzyme whose end-product was unsaturated disaccharide. This study enhances our understanding of hyaluronidases from human gut microorganisms.


Asunto(s)
Clonación Molecular , Polisacárido Liasas , Polisacárido Liasas/genética , Polisacárido Liasas/química , Polisacárido Liasas/aislamiento & purificación , Polisacárido Liasas/metabolismo , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Escherichia/genética , Escherichia/enzimología , Ácido Hialurónico/química , Ácido Hialurónico/metabolismo , Estabilidad de Enzimas , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Concentración de Iones de Hidrógeno , Especificidad por Sustrato
8.
Inorg Chem ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39302701

RESUMEN

The significant temperature response of lanthanide-doped up-conversion luminescent materials is typically characterized by a severe thermal quenching of the luminescence intensity at elevated ambient temperatures, which severely restricts materials' capability in temperature sensing. Herein, the influence of matrix phonon properties on the remarkable thermal enhancement effect in the thermosensitive material NaLaMgWO6:Yb3+/Nd3+ is reported. It is elucidated that achieving a significant thermal enhancement of Nd3+ with a higher phonon energy oxide matrix is easier than a halide matrix, which has lower phonon energy by comparison with previous findings. Interestingly, the emission of thermally related levels gets enhanced to various extents through phonon-assisted thermal population. In light of this, a three-model thermometer is constructed based on luminescence intensity ratio (LIR) technology. Given that Sr and ΔE possess a positive correlation, it is feasible to acquire greater temperature monitoring sensitivity Sr in Nd3+, which has a larger ΔE. At 313 K, this thermometry model may achieve a maximum sensitivity of 2.84%·K-1. This work not only provides guidance for the selection of efficient near-infrared up-conversion material but also opens up a prospect for the realization of ultrasensitive thermally coupled luminescent thermometers.

9.
Cell Biol Toxicol ; 40(1): 40, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38797732

RESUMEN

MYBL1 is a strong transcriptional activator involved in the cell signaling. However, there is no systematic study on the role of MYBL1 in atherosclerosis. The aim of this study is to elucidate the role and mechanism of MYBL1 in atherosclerosis. GSE28829, GSE43292 and GSE41571 were downloaded from NCBI for differentially expressed analysis. The expression levels of MYBL1 in atherosclerotic plaque tissue and normal vessels were detected by qRT-PCR, Western blot and Immunohistochemistry. Transwell and CCK-8 were used to detect the migration and proliferation of HUVECs after silencing MYBL1. RNA-seq, Western blot, qRT-PCR, Luciferase reporter system, Immunofluorescence, Flow cytometry, ChIP and CO-IP were used to study the role and mechanism of MYBL1 in atherosclerosis. The microarray data of GSE28829, GSE43292, and GSE41571 were analyzed and intersected, and then MYBL1 were verified. MYBL1 was down-regulated in atherosclerotic plaque tissue. After silencing of MYBL1, HUVECs were damaged, and their migration and proliferation abilities were weakened. Overexpression of MYBL1 significantly enhanced the migration and proliferation of HUVECs. MYBL1 knockdown induced abnormal autophagy in HUVEC cells, suggesting that MYBL1 was involved in the regulation of HUVECs through autophagy. Mechanistic studies showed that MYBL1 knockdown inhibited autophagosome and lysosomal fusion in HUVECs by inhibiting PLEKHM1, thereby exacerbating atherosclerosis. Furthermore, MYBL1 was found to repress lipid accumulation in HUVECs after oxLDL treatment. MYBL1 knockdown in HUVECs was involved in atherosclerosis by inhibiting PLEKHM1-induced autophagy, which provided a novel target of therapy for atherosclerosis.


Asunto(s)
Aterosclerosis , Autofagia , Movimiento Celular , Proliferación Celular , Regulación hacia Abajo , Células Endoteliales de la Vena Umbilical Humana , Animales , Humanos , Aterosclerosis/metabolismo , Aterosclerosis/genética , Aterosclerosis/patología , Autofagia/genética , Movimiento Celular/genética , Proliferación Celular/genética , Regulación hacia Abajo/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/genética , Placa Aterosclerótica/patología , Transactivadores/metabolismo , Transactivadores/genética
10.
Int J Mol Sci ; 25(11)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38891987

RESUMEN

Alginate lyases cleave the 1,4-glycosidic bond of alginate by eliminating sugar molecules from its bond. While earlier reported alginate lyases were primarily single catalytic domains, research on multi-module alginate lyases has been lfiguimited. This study identified VsAly7A, a multi-module alginate lyase present in Vibrio sp. QY108, comprising a "Pro-Asp-Thr(PDT)" fragment and two PL-7 catalytic domains (CD I and CD II). The "PDT" fragment enhances the soluble expression level and increases the thermostability and binding affinity to the substrate. Moreover, CD I exhibited greater catalytic efficiency than CD II. The incorporation of PDT-CD I resulted in an increase in the optimal temperature of VsAly7A, whereas CD II displayed a preference for polyG degradation. The multi-domain structure of VsAly7A provides a new idea for the rational design of alginate lyase, whilst the "PDT" fragment may serve as a fusion tag in the soluble expression of recombinant proteins.


Asunto(s)
Alginatos , Estabilidad de Enzimas , Polisacárido Liasas , Vibrio , Polisacárido Liasas/metabolismo , Polisacárido Liasas/genética , Polisacárido Liasas/química , Vibrio/enzimología , Vibrio/genética , Alginatos/metabolismo , Alginatos/química , Unión Proteica , Dominio Catalítico , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Solubilidad , Secuencia de Aminoácidos , Temperatura , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
11.
Radiology ; 308(2): e222785, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37552075

RESUMEN

Background The radiotracer fluorine 18 (18F)-labeled fibroblast activation protein inhibitor (FAPI) has shown promise for visualizing several types of cancer, but the accuracy of 18F-FAPI compared with 18F-fluorodeoxyglucose (FDG) for the detection of lung cancer remains uncertain. Purpose To evaluate the effectiveness of 18F-FAPI-based PET/CT imaging for the diagnosis of primary and metastatic lung cancer lesions as compared with 18F-FDG PET/CT. Materials and Methods In this secondary analysis of a prospective trial, consecutively recruited patients from a single center with pathologically confirmed lung cancer were prospectively enrolled from December 2020 to April 2022 and underwent paired 18F-FAPI and 18F-FDG PET/CT examinations at intervals of more than 20 hours and within 7 days of each other. Histopathologic and clinical follow-up results were used as reference standards for final diagnoses. 18F-FAPI and 18F-FDG uptake were compared using the McNemar test or paired Student t test. Diagnostic accuracy was compared between the two techniques by using the McNemar χ2 test. Results Sixty-eight participants (median age, 63 years [IQR, 58-68 years; range, 42-79 years]; 46 male [68%]) were evaluated. Compared with the mean tumor-to-background ratio (TBR) for FDG uptake, TBR for FAPI uptake was lower in primary lung tumors (25.3 ± 14.0 [SD] vs 32.1 ± 21.1; P < .001) but higher in metastatic lymph nodes (7.5 ± 6.6 vs 5.9 ± 8.6; P < .001) and bone metastases (8.6 ± 5.4 vs 4.3 ± 2.3; P < .001). For diagnostic accuracy in a total of 548 lesions in 68 participants, compared with 18F-FDG PET/CT, 18F-FAPI PET/CT demonstrated a higher sensitivity (99% [392 of 397 lesions] vs 87% [346 of 397]; P < .001), specificity (93% [141 of 151 lesions] vs 79% [120 of 151]; P = .004), accuracy (97% [533 of 548 lesions] vs 85% [466 of 548]; P < .001), and negative predictive value (97% [141 of 146 lesions] vs 70% [120 of 171 lesions]; P < .001), but there was no evidence of a difference for positive predictive value (98% [392 of 402 lesions] vs 92% [346 of 377 lesions]; P = .57). Conclusion 18F-FAPI PET/CT may be superior to 18F-FDG PET/CT for detecting lung cancer. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Zukotynski and Gerbaudo in this issue.


Asunto(s)
Neoplasias Pulmonares , Quinolinas , Humanos , Masculino , Persona de Mediana Edad , Fluorodesoxiglucosa F18 , Radioisótopos de Galio , Neoplasias Pulmonares/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones , Estudios Prospectivos
12.
New Phytol ; 237(2): 414-422, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36263689

RESUMEN

AVRPPHB SUSCEPTIBLE 3 (PBS3) belongs to the GH3 family of acyl acid amido synthetases, which conjugates amino acids to diverse acyl acid substrates. Recent studies demonstrate that PBS3 in Arabidopsis plays a key role in the biosynthesis of plant defense hormone salicylic acid (SA) by catalyzing the conjugation of glutamate to isochorismate to form isochorismate-9-glutamate, which is then used to produce SA through spontaneous decay or ENHANCED PSEUDOMONAS SUSCEPTIBILITY (EPS1) catalysis. Consistent with its function as an essential enzyme for SA biosynthesis, PBS3 is well known to be a positive regulator of plant immunity in Arabidopsis. Additionally, PBS3 is also involved in the trade-off between abiotic and biotic stress responses in Arabidopsis by suppressing the inhibitory effect of abscisic acid on SA-mediated plant immunity. Besides stress responses, PBS3 also plays a role in plant development. Under long-day conditions, PBS3 influences Arabidopsis flowering time by regulating the expression of flowering regulators FLOWERING LOCUS C and FLOWERING LOCUS T. Taken together, PBS3 functions in the signaling network of plant development and responses to biotic and/or abiotic stresses, but the molecular mechanisms underlying its diverse roles remain obscure.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácido Corísmico/metabolismo , Ácido Salicílico/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas
13.
Glob Chang Biol ; 29(11): 3072-3084, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36854491

RESUMEN

Vegetation response to soil and atmospheric drought has raised extensively controversy, however, the relative contributions of soil drought, atmospheric drought, and their compound droughts on global vegetation growth remain unclear. Combining the changes in soil moisture (SM), vapor pressure deficit (VPD), and vegetation growth (normalized difference vegetation index [NDVI]) during 1982-2015, here we evaluated the trends of these three drought types and quantified their impacts on global NDVI. We found that global VPD has increased 0.22 ± 0.05 kPa·decade-1 during 1982-2015, and this trend was doubled after 1996 (0.32 ± 0.16 kPa·decade-1 ) than before 1996 (0.16 ± 0.15 kPa·decade-1 ). Regions with large increase in VPD trend generally accompanied with decreasing trend in SM, leading to a widespread increasing trend in compound droughts across 37.62% land areas. We further found compound droughts dominated the vegetation browning since late 1990s, contributing to a declined NDVI of 64.56%. Earth system models agree with the dominant role of compound droughts on vegetation growth, but their negative magnitudes are considerably underestimated, with half of the observed results (34.48%). Our results provided the evidence of compound droughts-induced global vegetation browning, highlighting the importance of correctly simulating the ecosystem-scale response to the under-appreciated exposure to compound droughts as it will increase with climate change.


Asunto(s)
Sequías , Ecosistema , Suelo , Cambio Climático
14.
Glob Chang Biol ; 29(17): 4750-4757, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37381593

RESUMEN

Climate change leads to increasing temperature and more extreme hot and drought events. Ecosystem capability to cope with climate warming depends on vegetation's adjusting pace with temperature change. How environmental stresses impair such a vegetation pace has not been carefully investigated. Here we show that dryness substantially dampens vegetation pace in warm regions to adjust the optimal temperature of gross primary production (GPP) ( T opt GPP ) in response to change in temperature over space and time. T opt GPP spatially converges to an increase of 1.01°C (95% CI: 0.97, 1.05) per 1°C increase in the yearly maximum temperature (Tmax ) across humid or cold sites worldwide (37o S-79o N) but only 0.59°C (95% CI: 0.46, 0.74) per 1°C increase in Tmax across dry and warm sites. T opt GPP temporally changes by 0.81°C (95% CI: 0.75, 0.87) per 1°C interannual variation in Tmax at humid or cold sites and 0.42°C (95% CI: 0.17, 0.66) at dry and warm sites. Regardless of the water limitation, the maximum GPP (GPPmax ) similarly increases by 0.23 g C m-2 day-1 per 1°C increase in T opt GPP in either humid or dry areas. Our results indicate that the future climate warming likely stimulates vegetation productivity more substantially in humid than water-limited regions.


Asunto(s)
Cambio Climático , Plantas , Estrés Fisiológico , Temperatura , Sequías , Ecosistema
15.
Eur J Nucl Med Mol Imaging ; 50(11): 3425-3438, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37328622

RESUMEN

PURPOSE: We investigated whether uptake of [18F] AlF-NOTA-FAPI-04 on positron emission tomography/computed tomography (PET/CT) could predict treatment response and survival in patients with pancreatic ductal adenocarcinoma (PDAC). METHODS: We prospectively evaluated 47 patients with histopathologically confirmed primary PDAC who provided pretreatment [18F] AlF-NOTA-FAPI-04 scans to detect fibroblast activation protein (FAP) on the tumor surface by uptake of [18F] AlF-NOTA-FAPI-04. PDAC specimens were immunohistochemically stained with cancer-associated fibroblast (CAF) markers. We obtained a second PET scan after one cycle of chemotherapy to study changes in FAPI uptake variables from before to during treatment. Correlations between baseline PET variables and CAF-related immunohistochemical markers were assessed with Spearman's rank test. Cox regression and Kaplan-Meier methods were used to assess relationships between disease progression and potential predictors. Receiver operating characteristic (ROC) curve analysis was used to define the optimal cut-off points for distinguishing patients according to good response vs. poor response per RECIST v.1.1. RESULTS: The FAPI PET variables maximum and mean standardized uptake values (SUVmax, SUVmean), metabolic tumor volume (MTV), and total lesion FAP expression (TLF) were positively correlated with CAF markers (FAP, α-smooth muscle actin, vimentin, S100A4, and platelet-derived growth factor receptor α/ß, all P < 0.05). MTV was associated with survival in patients with inoperable PDAC (all P < 0.05). Cox multivariate regression showed that MTV was associated with overall survival (MTV hazard ratio [HR] = 1.016, P = 0.016). Greater changes from before to during chemotherapy in SUVmax, MTV, and TLF were associated with good treatment response (all P < 0.05). ΔMTV, ΔTLF, and ΔSUVmax had larger areas under the curve than ΔCA19-9 for predicting treatment response. Kaplan-Meier analysis showed that the extent of change in MTV and TLF from before to after treatment predicted progression-free survival, with cut-off values (based on medians) of - 4.95 for ΔMTV (HR = 8.09, P = 0.013) and - 77.83 for ΔTLF (HR = 4.62, P = 0.012). CONCLUSIONS: A higher baseline MTV on [18F] AlF-NOTA-FAPI-04 scans was associated with poorer survival in patients with inoperable PDAC. ΔMTV was more sensitive for predicting response than ΔCA19-9. These results are clinically meaningful for identifying patients with PDAC who are at high risk of disease progression.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Fluorodesoxiglucosa F18/metabolismo , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/tratamiento farmacológico , Carcinoma Ductal Pancreático/diagnóstico por imagen , Carcinoma Ductal Pancreático/tratamiento farmacológico , Progresión de la Enfermedad , Neoplasias Pancreáticas
16.
J Fluoresc ; 33(5): 1841-1851, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36853552

RESUMEN

Carbon dots (CDs) have preeminent application prospects as a new star in the nanomaterials field. In this work, a green and facile method to synthesize the blue-emitting CDs was proposed with Melia azedarach leaves as the carbon precursors. Using nature materials without other expensive reagents and instruments, the processes were simple and environmental-friendly. The CDs had high fluorescence quantum yield (11.8%) and excellent luminescence properties. The size of them were among 1.5-2.5 nm and the emission spectrum exhibited a strong peak at 460 nm when excited at 380 nm. Additionally, the CDs were stable in most ions but sensitive to different pH values. As a result, a pH sensor was established for the detection of pH with a linear range of 3-10 pH. Moreover, it was demonstrated that the synthesized CDs had extremely low cytotoxicity. Due to their low toxicity and good biocompatibility, they entered into the A549 cells successfully for cell imaging.


Asunto(s)
Melia azedarach , Puntos Cuánticos , Puntos Cuánticos/química , Carbono/química , Fluorescencia , Concentración de Iones de Hidrógeno , Colorantes Fluorescentes/química
17.
Nucleic Acids Res ; 49(4): 1886-1899, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33476385

RESUMEN

Methylglyoxal (MG) is a byproduct of glycolysis that functions in diverse mammalian developmental processes and diseases and in plant responses to various stresses, including salt stress. However, it is unknown whether MG-regulated gene expression is associated with an epigenetic modification. Here we report that MG methylglyoxalates H3 including H3K4 and increases chromatin accessibility, consistent with the result that H3 methylglyoxalation positively correlates with gene expression. Salt stress also increases H3 methylglyoxalation at salt stress responsive genes correlated to their higher expression. Following exposure to salt stress, salt stress responsive genes were expressed at higher levels in the Arabidopsis glyI2 mutant than in wild-type plants, but at lower levels in 35S::GLYI2 35S::GLYII4 plants, consistent with the higher and lower MG accumulation and H3 methylglyoxalation of target genes in glyI2 and 35S::GLYI2 35S::GLYII4, respectively. Further, ABI3 and MYC2, regulators of salt stress responsive genes, affect the distribution of H3 methylglyoxalation at salt stress responsive genes. Thus, MG functions as a histone-modifying group associated with gene expression that links glucose metabolism and epigenetic regulation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Código de Histonas , Piruvaldehído/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Epigénesis Genética , Estrés Salino/genética , Factores de Transcripción/metabolismo
18.
BMC Med ; 20(1): 39, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35109847

RESUMEN

BACKGROUND: Evidence associating diet with the incidence of renal cell carcinoma (RCC) is inconclusive. We aimed to summarize evidence associating dietary factors with RCC incidence and assess the strength and validity of this evidence. METHODS: We conducted an umbrella review of systematic reviews or meta-analyses (SRoMAs) that assessed the association between diet and RCC incidence. Through April 2021, PubMed, Web of Science, Embase, The Cochrane Library, Scopus, and WCRF were searched. Two independent reviewers selected studies, extracted data, and appraised the quality of SRoMAs. According to credibility assessment criteria, evidence can be divided into five categories: convincing (class I), highly suggestive (class II), suggestive (class III), weak (class IV), and nonsignificant (class V). RESULTS: Twenty-nine meta-analyses were obtained after screening. After excluding 7 overlapping meta-analyses, 22 meta-analyses including 502 individual studies and 64 summary hazard ratios for RCC incidence were included: dietary patterns or dietary quality indices (n = 6), foods (n = 13), beverages (n = 4), alcohol (n = 7), macronutrients (n =15), and micronutrients (n =19). No meta-analyses had high methodological quality. Five meta-analyses exhibited small study effects; one meta-analysis showed evidence of excess significance bias. No dietary factors showed convincing or highly suggestive evidence of association with RCC in the overall analysis. Two protective factors had suggestive evidence (vegetables (0.74, 95% confidence interval 0.63 to 0.86) and vitamin C (0.77, 0.66 to 0.90)) in overall analysis. One protective factor had convincing evidence (moderate drinking (0.77, 0.70 to 0.84)) in Europe and North America and one protective factor had highly suggestive evidence (cruciferous vegetables (0.78, 0.70 to 0.86)) in North America. CONCLUSIONS: Although many meta-analyses have assessed associations between dietary factors and RCC, no high-quality evidence exists (classes I and II) in the overall analysis. Increased intake of vegetables and vitamin C is negatively associated with RCC risk. Moderate drinking might be beneficial for Europeans and North Americans, and cruciferous vegetables might be beneficial to North Americans, but the results should be interpreted with caution. More researches are needed in the future. TRIAL REGISTRATION: PROSPERO CRD42021246619.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Carcinoma de Células Renales/epidemiología , Dieta/efectos adversos , Humanos , Neoplasias Renales/epidemiología , Revisiones Sistemáticas como Asunto , Verduras
20.
Glob Chang Biol ; 28(13): 4110-4123, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35429206

RESUMEN

The dominance of vapor pressure deficit (VPD) and soil water content (SWC) for plant water stress is still under debate. These two variables are strongly coupled and influenced by climatic drivers. The impacts of climatic drivers on the relationships between gross primary production (GPP) and water stress from VPD/SWC and the interaction between VPD and SWC are not fully understood. Here, applying statistical methods and extreme gradient boosting models-Shapley additive explanations framework to eddy-covariance observations from the global FLUXNET2015 data set, we found that the VPD-GPP relationship was strongly influenced by climatic interactions and that VPD was more important for plant water stress than SWC across most plant functional types when we removed the effect of main climatic drivers, e.g. air temperature, incoming shortwave radiation and wind speed. However, we found no evidence for a significant influence of elevated CO2 on stress alleviation, possibly because of the short duration of the records (approximately one decade). Additionally, the interactive effect between VPD and SWC differed from their individual effect. When SWC was high, the SHAP interaction value of SWC and VPD on GPP was decreased with increasing VPD, but when SWC was low, the trend was the opposite. Additionally, we revealed a threshold effect for VPD stress on GPP loss; above the threshold value, the stress on GPP was flattened off. Our results have important implications for independently identifying VPD and SWC limitations on plant productivity, which is meaningful for capturing the magnitude of ecosystem responses to water stress in dynamic global vegetation models.


Asunto(s)
Deshidratación , Ecosistema , Humanos , Suelo , Temperatura , Presión de Vapor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA