Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Sci Technol Adv Mater ; 24(1): 2261833, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37854121

RESUMEN

Anion exchange membranes (AEMs) are core components in fuel cells and water electrolyzers, which are crucial to realize a sustainable hydrogen society. The low anion conductivity and durability of AEMs have hindered the commercialization of AEM-based devices, and research and development (R&D) to improve AEM materials is often resource-intensive. Although machine learning (ML) is commonly used in many fields to accelerate R&D while reducing resource consumption, it is rarely used in the AEM field. Three problems hinder the adoption of ML models, namely, the low explainability of ML models; complication with expressing both homopolymers and copolymers in unity to train a single ML model; and difficulty in building a single ML model that comprehends various polymer types. This study presents the first ML models that solve all three problems. Our models predicted the anion conductivity for a diverse set of unseen AEM materials with high accuracy (root mean squared error = 0.014 S cm-1), regardless of their state (freshly synthesized or degraded). This enables virtual pre-synthesis screening of novel AEM materials, reducing resource consumption. Moreover, human-comprehensible prediction logic revealed new factors affecting the anion conductivity of AEM materials. Such capability to reveal new important variables for AEM materials design could shift the paradigm of AEM R&D. This proposed method is not limited to AEM materials, instead it presents a technology that is applicable to the diverse set of polymers currently available.

2.
Sci Technol Adv Mater ; 22(1): 272-279, 2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33907526

RESUMEN

The large anisotropic thermal conduction of a carbon nanotube (CNT) sheet that originates from the in-plane orientation of one-dimensional CNTs is disadvantageous for thermoelectric conversion using the Seebeck effect since the temperature gradient is difficult to maintain in the current flow direction. To control the orientation of the CNTs, polymer particles are introduced as orientation aligners upon sheet formation by vacuum filtration. The thermal conductivities in the in-plane direction decrease as the number of polymer particles in the sheet increases, while that in the through-plane direction increases. Consequently, a greater temperature gradient is observed for the anisotropy-controlled CNT sheet as compared to that detected for the CNT sheet without anisotropy control when a part of the sheet is heated, which results in a higher power density for the planar-type thermoelectric device. These findings are quite useful for the development of flexible and wearable thermoelectric batteries using CNT sheets.

3.
J Am Chem Soc ; 142(27): 11847-11856, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32539417

RESUMEN

Single-walled carbon nanotubes (SWCNTs) have the potential to revolutionize nanoscale electronics and power sources; however, their low purity and high separation cost limit their use in practical applications. Here we present a supramolecular chemistry-based one-pot, less expensive, scalable, and highly efficient separation of a solubilizer/adsorbent-free pure semiconducting SWCNT (sc-SWCNT) using flavin/isoalloxazine analogues with different substituents. On the basis of both experimental and computational simulations (DFT study), we have revealed the molecular requirements of the solubilizers as well as provided a possible mechanism for such a highly efficient selective sc-SWCNT separation. The present sorting method is very simple (one-pot) and gives a promising sc-SWCNT separation methodology. Thus, the study provides insight for the molecular design of an sc-SWCNT solubilizer with a high (n,m)-chiral selectivity, which benefits many areas including semiconducting nanoelectronics, thermoelectric, bio and energy materials, and devices using solubilizer-free very pure sc-SWCNTs.

6.
Sci Technol Adv Mater ; 20(1): 97-104, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31001367

RESUMEN

Single-walled carbon nanotubes (SWNTs), especially their semiconducting type, are promising thermoelectric (TE) materials due to their high Seebeck coefficient. In this study, the in-plane Seebeck coefficient (S), electrical conductivity (σ), and thermal conductivity (κ) of sorted semiconducting SWNT (s-SWNT) free-standing sheets with different s-SWNT purities are measured to determine the figure of merit ZT. We find that the ZT value of the sheets increases with increasing s-SWNT purity, mainly due to an increase in Seebeck coefficient while the thermal conductivity remaining constant, which experimentally proved the superiority of the high purity s-SWNT as TE materials for the first time. In addition, from the comparison between sorted and unsorted SWNT sheets, it is recognized that the difference of ZT between unsorted SWNT and high-purity s-SWNT sheet is not remarkable, which suggests the control of carrier density is necessary to further clarify the superiority of SWNT sorting for TE applications.

7.
J Am Chem Soc ; 140(27): 8544-8550, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29906397

RESUMEN

Single-walled carbon nanotubes (SWNTs) have unique near-infrared absorption and photoemission properties that are attractive for in vivo biological applications such as photothermal cancer treatment and bioimaging. Therefore, a smart functionalization strategy for SWNTs to create biocompatible surfaces and introduce various ligands to target active cancer cells without losing the unique optical properties of the SWNTs is strongly desired. This paper reports the design and synthesis of a SWNT/gel hybrid containing maleimide groups, which react with various thiol compounds through Michael addition reactions. In this hybrid, the method called carbon nanotube micelle polymerization was used to noncovalently modify the surface of SWNTs with a cross-linked polymer gel layer. This method can form an extremely stable gel layer on SWNTs; such stability is essential for in vivo biological applications. The monomer used to form the gel layer contained a maleimide group, which was protected with furan in endo-form. The resulting hybrid was treated in water to induce deprotection via a retro-Diels-Alder reaction and then functionalized with thiol compounds through Michael addition. The functionalization of the hybrid was explored using a thiol-containing fluorescent dye as a model thiol, and the formation of the SWNT-dye conjugate was confirmed by energy transfer from the dye to SWNTs. Our strategy offers a promising SWNT-based platform for biological functionalization for cancer targeting, imaging, and treatment.

8.
Chemistry ; 24(37): 9393-9398, 2018 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-29741218

RESUMEN

Doped semiconducting single-walled carbon nanotubes (SWNTs) through local chemical functionalization (lf-SWNTs) show fascinating photoluminescence (PL) that appears with a longer wavelength and enhanced quantum yield compared to the original PL of non-modified SWNTs. In this study, we introduce an azacrown ether moiety at the doped sites of lf-SWNTs (CR-lf-SWNTs), and observe selective PL wavelength shifts depending on different interaction modes of silver ion inclusion and protonation of the amino group in the ring. Interestingly, their different values of the wavelength shifts show a clear correlation with calculated electron density of the nitrogen atom in the azacrown moiety in case of the inclusion form and the protonated form. This newly-observed responsiveness based on molecular interactions is expected to create doped sites that can versatilely control the PL functions based on molecular systems.

9.
Chemistry ; 24(72): 19162-19165, 2018 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-30370950

RESUMEN

Local chemical functionalization is used for defect doping of single-walled carbon nanotubes (SWNTs), to develop near-infrared photoluminescence (NIR PL) properties. We report the multistep wavelength shifting of the NIR PL of SWNTs through chemical reactions at local doped sites tethered to an arylaldehyde group. The PL wavelength of the doped SWNTs is modulated based on imine chemistry. This involves the imine formation of aldehyde groups with added arylamines, imine dissociation reaction, exchange reaction of bound arylamines in the imine, and the Kabachnik-Fields reaction of imine groups using diisopropyl phosphite. Using doped sites as a localized chemical reaction platform can exploit the versatile molecularly driven functionality of carbon nanotubes and related nanomaterials.

10.
Chemphyschem ; 18(22): 3274-3279, 2017 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-28985010

RESUMEN

Multiple approaches will be needed to reduce the atmospheric CO2 levels, which have been linked to the undesirable effects of global climate change. The electroreduction of CO2 driven by renewable energy is one approach to reduce CO2 emissions while producing chemical building blocks, but current electrocatalysts exhibit low activity and selectivity. Here, we report the structural and electrochemical characterization of a promising catalyst for the electroreduction of CO2 to CO: Au nanoparticles supported on polymer-wrapped multiwall carbon nanotubes. This catalyst exhibits high selectivity for CO over H2 : 80-92 % CO, as well as high activity: partial current density for CO as high as 160 mA cm-2 . The observed high activity, originating from a high electrochemically active surface area (23 m2 g-1 Au), in combination with the low loading (0.17 mg cm-2 ) of the highly dispersed Au nanoparticles underscores the promise of this catalyst for efficient electroreduction of CO2 .

11.
Sci Technol Adv Mater ; 16(2): 024802, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27877763

RESUMEN

Carbon nanotubes (CNTs) have been recognized as a promising material in a wide range of applications from biotechnology to energy-related devices. However, the poor solubility in aqueous and organic solvents hindered the applications of CNTs. As studies have progressed, the methodology for CNT dispersion was established. In this methodology, the key issue is to covalently or non-covalently functionalize the surfaces of the CNTs with a dispersant. Among the various types of dispersions, polymer wrapping through non-covalent interactions is attractive in terms of the stability and homogeneity of the functionalization. Recently, by taking advantage of their stability, the wrapped-polymers have been utilized to support and/or reinforce the unique functionality of the CNTs, leading to the development of high-performance devices. In this review, various polymer wrapping approaches, together with the applications of the polymer-wrapped CNTs, are summarized.

12.
Sci Technol Adv Mater ; 15(2): 025005, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27877666

RESUMEN

The fabrication of flexible transparent conducting films (TCFs) is important for the development of the next-generation flexible devices. In this study, we used double-walled carbon nanotubes (DWCNTs) as the starting material and described a fabrication method of flexible TCFs. We have determined in a quantitative way that the key factors are the length and the dispersion states of the DWCNTs as well as the weight-ratios of dispersant polymer/DWCNTs. By controlling such factors, we have readily fabricated a flexible highly transparent (94% transmittance) and conductive (surface resistivity = 320 Ω sq-1) DWCNT film without adding any chemical doping that is often used to reduce the surface resistivity. By applying a wet coating, we have succeeded in the fabrication of large-scale conducting transparent DWCNT films based on the role-to-role method.

13.
Sci Technol Adv Mater ; 15(4): 045002, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27877703

RESUMEN

We describe, for the first time, the perforation of the cell membrane in the targeted single cell based on the nanosecond pulsed near-infrared (NIR) laser irradiation of a thin film of carbon nanotubes that act as an effective photon absorber as well as stimuli generator. When the power of NIR laser is over 17.5 µJ/pulse, the cell membrane after irradiation is irreversibly disrupted and results in cell death. In sharp contrast, the perforation of the cell membrane occurs at suitable laser power (∼15 µJ/pulse) without involving cell termination.

14.
Sci Rep ; 13(1): 21926, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38081981

RESUMEN

Neutral radicals, including carbon radicals, are highly useful chemical species for the functionalization of semiconducting materials to change their electrical and optical properties owing to their high reactivity. However, boron radicals have been limited to synthetic and reaction chemistry, with rare utilization in materials science. In this study, a mixture of tetrahydroxydiboron (B2(OH)4) and pyridine derivatives was found to act as an electron dopant for single-walled carbon nanotubes (SWCNTs) because of the electron transfer from pyridine-mediated boron radicals generated by B-B bond dissociation to neutral radicals. In particular, the radical formed from a mixture of B2(OH)4 and 4-phenylpyridine ((4-Phpy)B(OH)2·) efficiently doped electrons into the SWCNT films; thus, n-type SWCNTs with long-term air stability for more than 50 days at room temperature were prepared. Furthermore, the experimental and theoretical surface analyses revealed that the formation of stable cations from ((4-Phpy)B(OH)2·) and the efficient interaction with SWCNTs due to their high planarity served as the mechanism for their stable doping.

15.
J Am Chem Soc ; 134(30): 12700-7, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22788840

RESUMEN

Synthesized single-walled carbon nanotubes (SWNTs) are mixtures of right- and left-handed helicity and their separation is an essential topic in nanocarbon science. In this paper, we describe the separation of right- and left-handed semiconducting SWNTs from as-produced SWNTs. Our strategy for this goal is simple: we designed copolymers composed of polyfluorene and chiral bulky moieties because polyfluorenes with long alkyl-chains are known to dissolve only semiconducting SWNTs and chiral binaphthol is a so-called BINAP family that possesses a powerful enantiomer sorting capability. In this study, we synthesized 12 copolymers, (9,9-dioctylfluorene-2,7-diyl)x((R)- or (S)-2,2'-dimethoxy-1,1'-binaphthalen-6,6-diyl)y, where x and y are copolymer composition ratios. It was found that, by a simple one-pot sonication method, the copolymers are able to extract either right- or left-handed semiconducting SWNT enantiomers with (6,5)- and (7,5)-enriched chirality. The separated materials were confirmed by circular dichroism, vis-near IR and photoluminescence spectroscopies. Interestingly, the copolymer showed inversion of SWNT enantiomer recognition at higher contents of the chiral binaphthol moiety. Molecular mechanics simulations reveal a cooperative effect between the degree of chirality and copolymer conformation to be responsible for these distinct characteristics of the extractions. This is the first example describing the rational design and synthesis of novel compounds for the recognition and simple sorting of right- and left-handed semiconducting SWNTs with a specific chirality.

16.
J Nanosci Nanotechnol ; 12(3): 1717-38, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22754974

RESUMEN

For these two decade, tremendous amount of researches and developments dealing with carbon nanotubes (CNTs) have been carried out. Most of them are focusing on finding the unique and outstanding properties of CNTs and trying to utilizing them as the advanced materials. Whenever we start the research and the development of CNTs, the first difficulty is the dispersion of CNTs into the solvents since the CNTs form strong aggregation. Up to date, large efforts have been carried out for the preparation of CNT dispersion and the typical strategies are summarized. Such a dispersion technique allows us to use CNT as a material. Several applications of the CNT dispersion is also introduced.

17.
Nanoscale ; 14(36): 13090-13097, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-35938498

RESUMEN

Single-walled carbon nanotubes (SWCNTs) emit photoluminescence (PL) in the near-infrared (NIR) region (>900 nm). To enhance their PL properties, defect doping via local chemical functionalization has been developed. The locally functionalized SWCNTs (lf-SWCNTs) emit red-shifted and bright E11* PL originating from the excitons localized at the defect-doped sites. Here, we observe the E11* PL energy shifts induced by protein adsorption via the avidin-biotin interactions at the doped sites of lf-SWCNTs. We establish that the difference in the structures of the avidin derivatives notably influences the energy shifts. First, lf-SWCNT-tethering biotin groups (lf-SWCNTs-b) are synthesized based on diazonium chemistry, followed by post-modification. The responsiveness of the lf-SWCNTs-b to different microenvironments is investigated, and a correlation between the E11* PL energy shift and the induction-polarity parameters of surrounding solvents is established. The adsorption of neutravidin onto the lf-SWCNTs-b induces an increase in the induction-polarity parameters around the biotin-doped sites, resulting in the red-shift of the E11* PL peak. The E11* PL shift behaviors of the lf-SWCNTs-b change noticeably when avidin and streptavidin are introduced compared to the case with neutravidin. This is due to the different microenvironments formed at the biotin-doped sites, attributed to the difference in the structural features of the introduced avidin derivatives. Moreover, we successfully enhance the detection signals of lf-SWCNTs-b (>three fold) for streptavidin detection using a fabricated film device. Therefore, lf-SWCNTs exhibit significant promise for application in advanced protein detection/recognition devices based on NIR PL.


Asunto(s)
Nanotubos de Carbono , Avidina , Biotina , Nanotubos de Carbono/química , Solventes , Estreptavidina
18.
Chem Commun (Camb) ; 58(81): 11422-11425, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36134499

RESUMEN

Azide functionalization produced luminescent sp2-type defects on single-walled carbon nanotubes, by which defect photoluminescence appeared in near infrared regions (1116 nm). Changes in exciton properties were induced by localization effects at the defect sites, creating exciton-engineered nanomaterials based on the defect structure design.


Asunto(s)
Nanoestructuras , Nanotubos de Carbono , Azidas , Luminiscencia , Nanotubos de Carbono/química
19.
Nat Commun ; 13(1): 2417, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35577779

RESUMEN

The delivery of genetic material into plants has been historically challenging due to the cell wall barrier, which blocks the passage of many biomolecules. Carbon nanotube-based delivery has emerged as a promising solution to this problem and has been shown to effectively deliver DNA and RNA into intact plants. Mitochondria are important targets due to their influence on agronomic traits, but delivery into this organelle has been limited to low efficiencies, restricting their potential in genetic engineering. This work describes the use of a carbon nanotube-polymer hybrid modified with functional peptides to deliver DNA into intact plant mitochondria with almost 30 times higher efficiency than existing methods. Genetic integration of a folate pathway gene in the mitochondria displays enhanced plant growth rates, suggesting its applications in metabolic engineering and the establishment of stable transformation in mitochondrial genomes. Furthermore, the flexibility of the polymer layer will also allow for the conjugation of other peptides and cargo targeting other organelles for broad applications in plant bioengineering.


Asunto(s)
Nanotubos de Carbono , ADN/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Nanotubos de Carbono/química , Péptidos/química , Plantas/genética , Plantas/metabolismo , Polímeros/metabolismo
20.
ACS Nano ; 16(12): 21452-21461, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36384293

RESUMEN

Defect functionalization of single-walled carbon nanotubes (SWCNTs) by chemical modification is a promising strategy for near-infrared photoluminescence (NIR PL) generation at >1000 nm, which has advanced telecom and bio/medical applications. The covalent attachment of molecular reagents generates sp3-carbon defects in the sp2-carbon lattice of SWCNTs with bright red-shifted PL generation. Although the positional difference between proximal sp3-carbon defects, labeled as the defect binding configuration, can dominate NIR PL properties, the defect arrangement chemistry remains unexplored. Here, aryldiazonium reagents with π-conjugated ortho-substituents (phenyl and acetylene groups) were developed to introduce molecular interactions with nanotube sidewalls into the defect-formation chemical reaction. The functionalized chiral SWCNTs selectively emitted single defect PL in the wavelength range of ∼1230-1270 nm for (6,5) tubes, indicating the formation of an atypical binding configuration, different from those exhibited by typical aryl- or alkyl-functionalized chiral tubes emitting ∼1150 nm PL. Moreover, the acetylene-based substituent design enabled PL brightening and a subsequent molecular modification of the doped sites using click chemistry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA