Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Front Physiol ; 13: 882633, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464081

RESUMEN

Hippocampal formation (HF) plays a key role in cognitive and emotional processing in mammals. In HF neural circuits, serotonin receptors (5-HTRs) modulate functions related to cognition and emotion. To understand the phylogenetic continuity of the neural basis for cognition and emotion, it is important to identify the neural circuits that regulate cognitive and emotional processing in animals. In birds, HF has been shown to be related to cognitive functions and emotion-related behaviors. However, details regarding the distribution of 5-HTRs in the avian brain are very sparse, and 5-HTRs, which are potentially involved in cognitive functions and emotion-related behaviors, are poorly understood. Previously, we showed that 5-HTR1B and 5-HTR3A were expressed in chick HF. To identify additional 5-HTRs that are potentially involved in cognitive and emotional functions in avian HF, we selected the chick orthologs of 5-HTR1D, 5-HTR1E, 5-HTR1F, 5-HTR2B, 5-HTR5A, and 5-HTR7 and performed in situ hybridization in the chick telencephalon. We found that 5-HTR1D, 5-HTR1E, 5-HTR5A, and 5-HTR7 were expressed in the chick HF, especially 5-HTR1D and 5-HTR1E, which showed subdivision- and layer-selective expression patterns, suggesting that the characteristic 5-HT regulation is involved in cognitive functions and emotion-related behaviors in these HF regions. These findings can facilitate the understanding of serotonin regulation in avian HF and the correspondence between the HF subdivisions of birds and mammals.

2.
Front Physiol ; 12: 815997, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35111079

RESUMEN

Serotonin (5-hydroxytryptamine, 5-HT) is a phylogenetically conserved modulatory neurotransmitter. In mammals, 5-HT plays an important role in the regulation of many mental states and the processing of emotions in the central nervous system. Serotonergic neurons in the central nervous system, including the dorsal raphe (DR) and median raphe (MR) nuclei, are spatially clustered in the brainstem and provide ascending innervation to the entire forebrain and midbrain. Both between and within the DR and MR, these serotonergic neurons have different cellular characteristics, developmental origin, connectivity, physiology, and related behavioral functions. Recently, an understanding of the heterogeneity of the DR and MR serotonergic neurons has been developed at the molecular level. In birds, emotion-related behavior is suggested to be modulated by the 5-HT system. However, correspondence between the raphe nuclei of birds and mammals, as well as the cellular heterogeneity in the serotonergic neurons of birds are poorly understood. To further understand the heterogeneity of serotonergic neurons in birds, we performed a molecular dissection of the chick brainstem using in situ hybridization. In this study, we prepared RNA probes for chick orthologs of the following serotonin receptor genes: 5-HTR1A, 5-HTR1B, 5-HTR1D, 5-HTR1E, 5-HTR1F, 5-HTR2A, 5-HTR2B, 5-HTR2C, 5-HTR3A, 5-HTR4, 5-HTR5A, and 5-HTR7. We showed that the expression pattern of 5-HT receptors in the serotonin neurons of chick DR and MR may vary, suggesting heterogeneity among and within the serotonin neurons of the DR and MR in the chick brainstem. Our findings regarding the molecular properties of serotonergic neurons in the bird raphe system will facilitate a good understanding of the correspondence between bird and mammalian raphes.

3.
Sci Rep ; 10(1): 21183, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33273690

RESUMEN

Fear is an adaptive emotion that elicits defensive behavioural responses against aversive threats in animals. In mammals, serotonin receptors (5-HTRs) have been shown to modulate fear-related neural circuits in the basolateral amygdala complex (BLA). To understand the phylogenetic continuity of the neural basis for fear, it is important to identify the neural circuit that processes fear in other animals. In birds, fear-related behaviours were suggested to be processed in the arcopallium/amygdala complex and modulated by the serotonin (5-HT) system. However, details about the distribution of 5-HTRs in the avian brain are very sparsely reported, and the 5-HTR that is potentially involved in fear-related behaviour has not been elucidated. In this study, we showed that orthologs of mammalian 5-HTR genes that are expressed in the BLA, namely 5-HTR1A, 5-HTR1B, 5-HTR2A, 5-HTR2C, 5-HTR3A, and 5-HTR4, are expressed in a part of the chick arcopallium/amygdala complex called the dorsal arcopallium. This suggests that serotonergic regulation in the dorsal arcopallium may play an important role in regulating fear-related behaviour in birds. Our findings can be used as a basis for comparing the processing of fear and its serotonergic modulation in the mammalian amygdala complex and avian arcopallium/amygdala complex.


Asunto(s)
Encéfalo/anatomía & histología , Pollos/genética , Miedo/fisiología , Regulación de la Expresión Génica , Receptores de Serotonina/genética , Amígdala del Cerebelo/anatomía & histología , Animales , Mamíferos/genética , Modelos Biológicos , Receptores de Serotonina/metabolismo
4.
Behav Brain Res ; 379: 112291, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31689441

RESUMEN

Filial imprinting in precocial birds is a useful model for studying memory formation in early learning. The intermediate medial mesopallium (IMM) in the dorsal telencephalon is one of the critical brain regions where the releases of several neurotransmitters increase after the start of imprinting training. Among the increased neurotransmitters, the role of acetylcholine in imprinting has remained unclear. Acetylcholine in the mammalian brain plays an important role in encoding new memories. The muscarinic acetylcholine receptor subtype 1 (M1 receptor) and subtype 3 (M3 receptor) in the hippocampus and cortex of mammalian brain have been shown to be necessary for memory encoding. In this study, we examined whether the imprinting acquisition in chick can be impaired by injecting muscarinic acetylcholine receptor (mAChR) antagonist scopolamine into the bilateral IMM. We show that the injection of scopolamine decreased the preference for the imprinting object in the test, but did not affect the number of approaches to the imprinting object during training. Immunoblotting and immunohistochemistry revealed that M3 receptors were expressed in the IMM. Our data suggest that acetylcholine is involved in the memory formation of imprinting through M3 receptors in the IMM. The scopolamine-injected chicks may be useful as an animal model for dementia such as Alzheimer's disease.


Asunto(s)
Conducta Animal/efectos de los fármacos , Aprendizaje/efectos de los fármacos , Locomoción/efectos de los fármacos , Trastornos de la Memoria/inducido químicamente , Antagonistas Muscarínicos/farmacología , Receptor Muscarínico M3/metabolismo , Escopolamina/farmacología , Telencéfalo/efectos de los fármacos , Enfermedad de Alzheimer/fisiopatología , Animales , Pollos , Modelos Animales de Enfermedad , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/fisiopatología , Antagonistas Muscarínicos/administración & dosificación , Escopolamina/administración & dosificación , Telencéfalo/metabolismo , Telencéfalo/fisiopatología
5.
Sci Rep ; 9(1): 20400, 2019 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-31892722

RESUMEN

The avian pallium is organised into clusters of neurons and does not have layered structures such as those seen in the mammalian neocortex. The evolutionary relationship between sub-regions of avian pallium and layers of mammalian neocortex remains unclear. One hypothesis, based on the similarities in neural connections of the motor output neurons that project to sub-pallial targets, proposed the cell-type homology between brainstem projection neurons in neocortex layers 5 or 6 (L5/6) and those in the avian arcopallium. Recent studies have suggested that gene expression patterns are associated with neural connection patterns, which supports the cell-type homology hypothesis. However, a limited number of genes were used in these studies. Here, we showed that chick orthologues of mammalian L5/6-specific genes, nuclear receptor subfamily 4 group A member 2 and connective tissue growth factor, were strongly expressed in the arcopallium. However, other chick orthologues of L5/6-specific genes were primarily expressed in regions other than the arcopallium. Our results do not fully support the cell-type homology hypothesis. This suggests that the cell types of brainstem projection neurons are not conserved between the avian arcopallium and the mammalian neocortex L5/6. Our findings may help understand the evolution of pallium between birds and mammals.


Asunto(s)
Expresión Génica , Neocórtex/metabolismo , Neuronas/metabolismo , Animales , Evolución Biológica , Pollos
6.
Yakugaku Zasshi ; 128(10): 1383-401, 2008 Oct.
Artículo en Japonés | MEDLINE | ID: mdl-18827461

RESUMEN

To study how cholesterol accumulates in atheroma, novel monoclonal antibodies were developed, using crude homogenate of atheroma as immunogens. 212D monoclonal antibody recognizing extra cellular matrix with lipid-laden deposits was selected by histochemical staining. The antigen was deduced vitronectin from cDNA library. DLH3 monoclonal antibody recognizing oxidized LDL, epitope of which was 5- or 9-phosphatidylcholine. Significant correlations between oxidized LDL and coronary heart disease (CHD) patients were observed from clinical study. 256C monoclonal antibody recognizing atheromatous lesions in human aorta was selected. Epitope must be PC-cholesterol complex which may involve in foam cell rupture. Atherogenesis will be discussed from the aspects of these antibodies. Our working hypothesis is required to elucidate the mechanism. Denatured lipoproteins (either oxidized lipoprotein or ruptured foam cells) may induce atheroma. Oxidation of lipoprotein may be taken place both in foam cells and/or extra cellular matrix, and macrophage eliminate these denatured lipoproteins and become foam cells. The foam cells are ruptured by either apoptosis or necrosis afterward, and hydrophobic fragments of foam cells dispersed in extra cellular space, which destroys the function of biological membrane. Since biological function could be maintained by segregation of hydrophilic circumstances, macrophages uptake these fragmented material and oxidized lipoprotein to maintain the function. This vicious spiral may enhance chronically the atheroma.


Asunto(s)
Aorta/metabolismo , Aterosclerosis/genética , Aterosclerosis/patología , Ésteres del Colesterol/metabolismo , Animales , Anticuerpos Monoclonales , Apoptosis , Aterosclerosis/inmunología , Aterosclerosis/metabolismo , Células Espumosas/metabolismo , Células Espumosas/patología , Humanos , Lipoproteínas LDL/inmunología , Lipoproteínas LDL/metabolismo
7.
Front Physiol ; 9: 1837, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30618842

RESUMEN

Filial imprinting of domestic chicks has a well-defined sensitive (critical) period lasting in the laboratory from hatching to day 3. It is a typical model to investigate the molecular mechanisms underlying memory formation in early learning. We recently found that thyroid hormone 3,5,3'-triiodothyronine (T3) is a determinant of the sensitive period. Rapid increases in cerebral T3 levels are induced by imprinting training, rendering chicks imprintable. Furthermore, the administration of exogenous T3 makes chicks imprintable on days 4 or 6 even after the sensitive period has ended. However, how T3 affects neural transmission to enable imprinting remains mostly unknown. In this study, we demonstrate opposing roles for gamma-aminobutyric acid (GABA)-A and GABA-B receptors in imprinting downstream of T3. Quantitative reverse transcription polymerase chain reaction and immunoblotting showed that the GABA-A receptor expression increases gradually from days 1 to 5, whereas the GABA-B receptor expression gradually decreases. We examined whether neurons in the intermediate medial mesopallium (IMM), the brain region responsible for imprinting, express both types of GABA receptors. Immunostaining showed that morphologically identified putative projection neurons express both GABA-A and GABA-B receptors, suggesting that those GABA receptors interact with each other in these cells to modulate the IMM outputs. The roles of GABA-A and GABA-B receptors were investigated using various agonists and antagonists. Our results show that GABA-B receptor antagonists suppressed imprinting on day 1, while its agonists made day 4 chicks imprintable without administration of exogenous T3. By contrast, GABA-A receptor agonists suppressed imprinting on day 1, while its antagonists induced imprintability on day 4 without exogenous T3. Furthermore, both GABA-A receptor agonists and GABA-B receptor antagonists suppressed T3-induced imprintability on day 4 after the sensitive period has ended. Our data from these pharmacological experiments indicate that GABA-B receptors facilitate imprinting downstream of T3 by initiating the sensitive period, while the GABA-A receptor contributes to the termination of the sensitive period. In conclusion, we propose that opposing roles of GABA-A and GABA-B receptors in the brain during development determine the induction and termination of the sensitive period.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA