Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Virol ; 89(1): 165-80, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25320291

RESUMEN

UNLABELLED: The precise role(s) and topological organization of different factors in the hepatitis C virus (HCV) RNA replication complex are not well understood. In order to elucidate the role of viral and host proteins in HCV replication, we have developed a novel in vitro replication system that utilizes a rolling-circle RNA template. Under close-to-physiological salt conditions, HCV NS5BΔ21, an RNA-dependent RNA polymerase, has poor affinity for the RNA template. Human replication protein A (RPA) and HCV NS5A recruit NS5BΔ21 to the template. Subsequently, NS3 is recruited to the replication complex by NS5BΔ21, resulting in RNA synthesis stimulation by helicase. Both RPA and NS5A(S25-C447), but not NS5A(S25-K215), enabled the NS5BΔ21-NS3 helicase complex to be stably associated with the template and synthesize RNA product in a highly processive manner in vitro. This new in vitro HCV replication system is a useful tool that may facilitate the study of other replication factors and aid in the discovery of novel inhibitors of HCV replication. IMPORTANCE: The molecular mechanism of hepatitis C virus (HCV) replication is not fully understood, but viral and host proteins collaborate in this process. Using a rolling-circle RNA template, we have reconstituted an in vitro HCV replication system that allows us to interrogate the role of viral and host proteins in HCV replication and delineate the molecular interactions. We showed that HCV NS5A(S25-C447) and cellular replication protein A (RPA) functionally cooperate as a processivity factor to stimulate HCV replication by HCV NS5BΔ21 polymerase and NS3 helicase. This system paves the way to test other proteins and may be used as an assay for discovery of HCV inhibitors.


Asunto(s)
Hepacivirus/enzimología , Hepacivirus/fisiología , Interacciones Huésped-Patógeno , Proteína de Replicación A/metabolismo , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , ARN Viral/metabolismo , Eliminación de Secuencia , Proteínas no Estructurales Virales/genética
2.
Methods Mol Biol ; 498: 143-56, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-18988024

RESUMEN

The production of recombinant proteins usually involves the exploration of a wide variety of expression and purification methodologies in the pursuit of a strategy tailored to a particular protein. The methods applied are reliant on exploiting individual differences between expression systems or the variations in specific protein properties. These bespoke strategies have not lent themselves to high-throughput methodologies. Ultimately the development of robust generic methods capable of simplifying and stabilizing the process, allowing automation, was necessary to increase throughput. This chapter describes a series of high-throughput methods used to express, purify, and quantify recombinant protein produced in E. coli or insect cells.


Asunto(s)
Baculoviridae/genética , Escherichia coli/genética , Insectos/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Animales , Baculoviridae/crecimiento & desarrollo , Células/metabolismo , Insectos/virología , Procedimientos Analíticos en Microchip , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
3.
Anal Biochem ; 351(1): 122-7, 2006 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-16434014

RESUMEN

We have integrated high-throughput expression and purification with quantitative protein analysis to identify factors influencing protein production. Application of high-throughput expression and purification, combined with automated gel capillary electrophoresis, allowed the quantitative analysis of multiple expression variables in a single experiment. An experimental design utilizing multiple factorial screens was employed to identify single factors and interactions having a significant impact on expression. As a test case, expression of the nonstructural protein NS3 from different hepatitis C virus genotypes (1b, 2a, and 3a) was examined in Escherichia coli. The 1b genotype of NS3 produced the highest level of expression, which was then further optimized using response surface modeling to give a four-fold increase in soluble protein levels. The quantitative and statistical approach presented has the capability of rapidly identifying interactions among experimental variables, leading to more reliable prediction of protein expression. We propose that this technique has universal application in the production of recombinant proteins, providing a powerful tool for the optimization of protein expression.


Asunto(s)
Proteínas/química , Automatización , Modelos Químicos , Solubilidad
4.
J Biol Chem ; 280(44): 36784-91, 2005 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-16087668

RESUMEN

VX-950 is a potent, small molecule, peptidomimetic inhibitor of the hepatitis C virus (HCV) NS3.4A serine protease and has recently been shown to possess antiviral activity in a phase I trial in patients chronically infected with genotype 1 HCV. In a previous study, we described in vitro resistance mutations against either VX-950 or another HCV NS3.4A protease inhibitor, BILN 2061. Single amino acid substitutions that conferred drug resistance (distinct for either inhibitor) were identified in the HCV NS3 serine protease domain. The dominant VX-950-resistant mutant (A156S) remains sensitive to BILN 2061. The major BILN 2061-resistant mutants (D168V and D168A) are fully susceptible to VX-950. Modeling analysis suggested that there are different mechanisms of resistance for these mutations induced by VX-950 or BILN 2061. In this study, we identified mutants that are cross-resistant to both HCV protease inhibitors. The cross-resistance conferred by substitution of Ala(156) with either Val or Thr was confirmed by characterization of the purified enzymes and reconstituted replicon cells containing the single amino acid substitution A156V or A156T. Both cross-resistance mutations (A156V and A156T) displayed significantly diminished fitness (or replication capacity) in a transient replicon cell system.


Asunto(s)
Carbamatos/farmacología , Farmacorresistencia Viral , Hepacivirus/enzimología , Compuestos Macrocíclicos/farmacología , Mutación , Oligopéptidos/farmacología , Quinolinas/farmacología , Inhibidores de Serina Proteinasa/farmacología , Tiazoles/farmacología , Proteínas no Estructurales Virales/farmacología , Sustitución de Aminoácidos , Aminoácidos/química , Ácido Aspártico/química , Sitios de Unión , Genes Dominantes , Hepacivirus/efectos de los fármacos , Hepacivirus/genética , Humanos , Técnicas In Vitro , Concentración 50 Inhibidora , Cinética , Modelos Químicos , Modelos Moleculares , ARN Viral/fisiología , Replicón/fisiología , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética
5.
Protein Expr Purif ; 36(1): 40-7, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15177282

RESUMEN

We have constructed a dual expression vector for the production of recombinant proteins in both Escherichia coli and insect cells. In this vector, the baculoviral polyhedrin promoter was positioned upstream of the bacteriophage T7 promoter and the lac operator. This vector, designated pBEV, was specifically designed to exploit the advantages that both hosts would provide. This vector also facilitates one-stop cloning, thereby simplifying the expression process for automation, and the development of a high-throughput method for protein expression. Utilizing the multi-system vector pBEV, a high-throughput process was developed with expression in deep-well blocks and purification in micro-titer plates enabling the identification of expression and solubility in both E. coli and insect cells. In this study, using pBEV, we have successfully expressed and purified multiple human kinases produced in E. coli and insect cells. Our results validate expression screening as a strategy to rapidly triage proteins identifying the optimum expression system and conditions for production.


Asunto(s)
Escherichia coli/genética , Vectores Genéticos/genética , Insectos/citología , Proteínas Quinasas/biosíntesis , Proteínas Recombinantes/biosíntesis , Animales , Bacteriófago T7/genética , Línea Celular , ADN Polimerasa Dirigida por ADN/genética , Humanos , Operón Lac/genética , Regiones Promotoras Genéticas/genética , Proteínas Quinasas/química , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Solubilidad
6.
J Biol Chem ; 277(40): 37401-5, 2002 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-12171911

RESUMEN

MAPK-activated protein kinase 2 (MAPKAPK2), one of several kinases directly phosphorylated and activated by p38 MAPK, plays a central role in the inflammatory response. The activated MAPKAPK2 phosphorylates its nuclear targets CREB/ATF1, serum response factor, and E2A protein E47 and its cytoplasmic targets HSP25/27, LSP-1, 5-lipoxygenase, glycogen synthase, and tyrosine hydroxylase. The crystal structure of unphosphorylated MAPKAPK2, determined at 2.8 A resolution, includes the kinase domain and the C-terminal regulatory domain. Although the protein is inactive, the kinase domain adopts an active conformation with aspartate 366 mimicking the missing phosphorylated threonine 222 in the activation loop. The C-terminal regulatory domain forms a helix-turn-helix plus a long strand. Phosphorylation of threonine 334, which is located between the kinase domain and the C-terminal regulatory domain, may serve as a switch for MAPKAPK2 nuclear import and export. Phosphorylated MAPKAPK2 masks the nuclear localization signal at its C terminus by binding to p38. It unmasks the nuclear export signal, which is part of the second C-terminal helix packed along the surface of kinase domain C-lobe, and thereby carries p38 to the cytoplasm.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Clonación Molecular , Activación Enzimática , Humanos , Péptidos y Proteínas de Señalización Intracelular , Modelos Moleculares , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Estructura Secundaria de Proteína , Transporte de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
7.
J Biol Chem ; 279(17): 17508-14, 2004 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-14766754

RESUMEN

We have used a structure-based drug design approach to identify small molecule inhibitors of the hepatitis C virus (HCV) NS3.4A protease as potential candidates for new anti-HCV therapies. VX-950 is a potent NS3.4A protease inhibitor that was recently selected as a clinical development candidate for hepatitis C treatment. In this report, we describe in vitro resistance studies using a subgenomic replicon system to compare VX-950 with another HCV NS3.4A protease inhibitor, BILN 2061, for which the Phase I clinical trial results were reported recently. Distinct drug-resistant substitutions of a single amino acid were identified in the HCV NS3 serine protease domain for both inhibitors. The resistance conferred by these mutations was confirmed by characterization of the mutant enzymes and replicon cells that contain the single amino acid substitutions. The major BILN 2061-resistant mutations at Asp(168) are fully susceptible to VX-950, and the dominant resistant mutation against VX-950 at Ala(156) remains sensitive to BILN 2061. Modeling analysis suggests that there are different mechanisms of resistance to VX-950 and BILN 2061.


Asunto(s)
Carbamatos/farmacología , Inhibidores Enzimáticos/farmacología , Hepacivirus/enzimología , Compuestos Macrocíclicos , Oligopéptidos/farmacología , Quinolinas , Inhibidores de Serina Proteinasa/farmacología , Tiazoles/farmacología , Proteínas no Estructurales Virales/química , Aminoácidos/química , Ácido Aspártico/química , Sitios de Unión , Relación Dosis-Respuesta a Droga , Resistencia a Medicamentos , Genes Dominantes , Concentración 50 Inhibidora , Cinética , Modelos Químicos , Modelos Moleculares , Mutación , Plásmidos/metabolismo , Estructura Terciaria de Proteína , Factores de Tiempo , Proteínas no Estructurales Virales/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA