Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(6): 1052-1064.e12, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35180380

RESUMEN

SARS-CoV-2 infects less than 1% of cells in the human body, yet it can cause severe damage in a variety of organs. Thus, deciphering the non-cell-autonomous effects of SARS-CoV-2 infection is imperative for understanding the cellular and molecular disruption it elicits. Neurological and cognitive defects are among the least understood symptoms of COVID-19 patients, with olfactory dysfunction being their most common sensory deficit. Here, we show that both in humans and hamsters, SARS-CoV-2 infection causes widespread downregulation of olfactory receptors (ORs) and of their signaling components. This non-cell-autonomous effect is preceded by a dramatic reorganization of the neuronal nuclear architecture, which results in dissipation of genomic compartments harboring OR genes. Our data provide a potential mechanism by which SARS-CoV-2 infection alters the cellular morphology and the transcriptome of cells it cannot infect, offering insight to its systemic effects in olfaction and beyond.


Asunto(s)
Anosmia , COVID-19 , Animales , Cricetinae , Regulación hacia Abajo , Humanos , Receptores Odorantes , SARS-CoV-2 , Olfato
2.
Immunity ; 56(7): 1502-1514.e8, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37160117

RESUMEN

Glial cells and central nervous system (CNS)-infiltrating leukocytes contribute to multiple sclerosis (MS). However, the networks that govern crosstalk among these ontologically distinct populations remain unclear. Here, we show that, in mice and humans, CNS-resident astrocytes and infiltrating CD44hiCD4+ T cells generated interleukin-3 (IL-3), while microglia and recruited myeloid cells expressed interleukin-3 receptor-ɑ (IL-3Rɑ). Astrocytic and T cell IL-3 elicited an immune migratory and chemotactic program by IL-3Rɑ+ myeloid cells that enhanced CNS immune cell infiltration, exacerbating MS and its preclinical model. Multiregional snRNA-seq of human CNS tissue revealed the appearance of IL3RA-expressing myeloid cells with chemotactic programming in MS plaques. IL3RA expression by plaque myeloid cells and IL-3 amount in the cerebrospinal fluid predicted myeloid and T cell abundance in the CNS and correlated with MS severity. Our findings establish IL-3:IL-3RA as a glial-peripheral immune network that prompts immune cell recruitment to the CNS and worsens MS.


Asunto(s)
Esclerosis Múltiple , Animales , Humanos , Ratones , Sistema Nervioso Central , Interleucina-3 , Microglía , Neuroglía/metabolismo
3.
Nature ; 604(7905): 316-322, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35388222

RESUMEN

The brain consists of thousands of neuronal types that are generated by stem cells producing different neuronal types as they age. In Drosophila, this temporal patterning is driven by the successive expression of temporal transcription factors (tTFs)1-6. Here we used single-cell mRNA sequencing to identify the complete series of tTFs that specify most Drosophila optic lobe neurons. We verify that tTFs regulate the progression of the series by activating the next tTF(s) and repressing the previous one(s), and also identify more complex mechanisms of regulation. Moreover, we establish the temporal window of origin and birth order of each neuronal type in the medulla and provide evidence that these tTFs are sufficient to explain the generation of all of the neuronal diversity in this brain region. Finally, we describe the first steps of neuronal differentiation and show that these steps are conserved in humans. We find that terminal differentiation genes, such as neurotransmitter-related genes, are present as transcripts, but not as proteins, in immature larval neurons. This comprehensive analysis of a temporal series of tTFs in the optic lobe offers mechanistic insights into how tTF series are regulated, and how they can lead to the generation of a complete set of neurons.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Regulación del Desarrollo de la Expresión Génica , Lóbulo Óptico de Animales no Mamíferos , Factores de Transcripción , Visión Ocular , Percepción Visual , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Lóbulo Óptico de Animales no Mamíferos/citología , RNA-Seq , Análisis de la Célula Individual , Factores de Transcripción/metabolismo
4.
Mol Psychiatry ; 29(3): 782-792, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38145985

RESUMEN

Enhancers play an essential role in the etiology of schizophrenia; however, the dysregulation of enhancer activity and its impact on the regulome in schizophrenia remains understudied. To address this gap in our knowledge, we assessed enhancer and gene expression in 1,382 brain samples comprising cases with schizophrenia and unaffected controls. Dysregulation of enhancer expression was concordant with changes in gene expression, and was more closely associated with schizophrenia polygenic risk, suggesting that enhancer dysregulation is proximal to the genetic etiology of the disease. Modeling the shared variance of cis-coordinated genes and enhancers revealed a gene regulatory program that was highly associated with genetic vulnerability to schizophrenia. By integrating coordinated factors with evolutionary constraints, we found that enhancers acquired during human evolution are more likely to regulate genes that are implicated in neuropsychiatric disorders and, thus, hold potential as therapeutic targets. Our analysis provides a systematic view of regulome dysregulation in schizophrenia and highlights its convergence with schizophrenia polygenic risk and human-gained enhancers.


Asunto(s)
Elementos de Facilitación Genéticos , Predisposición Genética a la Enfermedad , Herencia Multifactorial , Esquizofrenia , Humanos , Esquizofrenia/genética , Herencia Multifactorial/genética , Predisposición Genética a la Enfermedad/genética , Elementos de Facilitación Genéticos/genética , Masculino , Femenino , Estudio de Asociación del Genoma Completo/métodos , Encéfalo/metabolismo , Regulación de la Expresión Génica/genética , Factores de Riesgo , Polimorfismo de Nucleótido Simple/genética , Adulto
5.
Nucleic Acids Res ; 51(20): 11142-11161, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37811875

RESUMEN

The human brain is a complex organ comprised of distinct cell types, and the contribution of the 3D genome to lineage specific gene expression remains poorly understood. To decipher cell type specific genome architecture, and characterize fine scale changes in the chromatin interactome across neural development, we compared the 3D genome of the human fetal cortical plate to that of neurons and glia isolated from the adult prefrontal cortex. We found that neurons have weaker genome compartmentalization compared to glia, but stronger TADs, which emerge during fetal development. Furthermore, relative to glia, the neuronal genome shifts more strongly towards repressive compartments. Neurons have differential TAD boundaries that are proximal to active promoters involved in neurodevelopmental processes. CRISPRi on CNTNAP2 in hIPSC-derived neurons reveals that transcriptional inactivation correlates with loss of insulation at the differential boundary. Finally, re-wiring of chromatin loops during neural development is associated with transcriptional and functional changes. Importantly, differential loops in the fetal cortex are associated with autism GWAS loci, suggesting a neuropsychiatric disease mechanism affecting the chromatin interactome. Furthermore, neural development involves gaining enhancer-promoter loops that upregulate genes that control synaptic activity. Altogether, our study provides multi-scale insights on the 3D genome in the human brain.


Asunto(s)
Encéfalo , Cromatina , Neurogénesis , Adulto , Humanos , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Cromatina/metabolismo , Genoma , Neuronas
6.
Development ; 147(22)2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-33229432

RESUMEN

Neural stem cells divide during embryogenesis and juvenile life to generate the entire complement of neurons and glia in the nervous system of vertebrates and invertebrates. Studies of the mechanisms controlling the fine balance between neural stem cells and more differentiated progenitors have shown that, in every asymmetric cell division, progenitors send a Delta-Notch signal to their sibling stem cells. Here, we show that excessive activation of Notch or overexpression of its direct targets of the Hes family causes stem-cell hyperplasias in the Drosophila larval central nervous system, which can progress to malignant tumours after allografting to adult hosts. We combined transcriptomic data from these hyperplasias with chromatin occupancy data for Dpn, a Hes transcription factor, to identify genes regulated by Hes factors in this process. We show that the Notch/Hes axis represses a cohort of transcription factor genes. These are excluded from the stem cells and promote early differentiation steps, most likely by preventing the reversion of immature progenitors to a stem-cell fate. We describe the impact of two of these 'anti-stemness' factors, Zfh1 and Gcm, on Notch/Hes-triggered tumorigenesis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carcinogénesis/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Redes Reguladoras de Genes , Células-Madre Neurales/metabolismo , Transducción de Señal , Transcripción Genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Carcinogénesis/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Receptores Notch/genética , Receptores Notch/metabolismo
7.
Mol Psychiatry ; 27(10): 4218-4233, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35701597

RESUMEN

Remarkable advances have been made in schizophrenia (SCZ) GWAS, but gleaning biological insight from these loci is challenging. Genetic influences on gene expression (e.g., eQTLs) are cell type-specific, but most studies that attempt to clarify GWAS loci's influence on gene expression have employed tissues with mixed cell compositions that can obscure cell-specific effects. Furthermore, enriched SCZ heritability in the fetal brain underscores the need to study the impact of SCZ risk loci in specific developing neurons. MGE-derived cortical interneurons (cINs) are consistently affected in SCZ brains and show enriched SCZ heritability in human fetal brains. We identified SCZ GWAS risk genes that are dysregulated in iPSC-derived homogeneous populations of developing SCZ cINs. These SCZ GWAS loci differential expression (DE) genes converge on the PKC pathway. Their disruption results in PKC hyperactivity in developing cINs, leading to arborization deficits. We show that the fine-mapped GWAS locus in the ATP2A2 gene of the PKC pathway harbors enhancer marks by ATACseq and ChIPseq, and regulates ATP2A2 expression. We also generated developing glutamatergic neurons (GNs), another population with enriched SCZ heritability, and confirmed their functionality after transplantation into the mouse brain. Then, we identified SCZ GWAS risk genes that are dysregulated in developing SCZ GNs. GN-specific SCZ GWAS loci DE genes converge on the ion transporter pathway, distinct from those for cINs. Disruption of the pathway gene CACNA1D resulted in deficits of Ca2+ currents in developing GNs, suggesting compromised neuronal function by GWAS loci pathway deficits during development. This study allows us to identify cell type-specific and developmental stage-specific mechanisms of SCZ risk gene function, and may aid in identifying mechanism-based novel therapeutic targets.


Asunto(s)
Esquizofrenia , Animales , Ratones , Humanos , Esquizofrenia/genética , Esquizofrenia/metabolismo , Estudio de Asociación del Genoma Completo/métodos , Interneuronas/metabolismo , Neuronas/metabolismo , Encéfalo/metabolismo , Predisposición Genética a la Enfermedad/genética
8.
Alzheimers Dement ; 19(8): 3472-3495, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36811307

RESUMEN

INTRODUCTION: Recent studies revealed the association of abnormal methylomic changes with Alzheimer's disease (AD) but there is a lack of systematic study of the impact of methylomic alterations over the molecular networks underlying AD. METHODS: We profiled genome-wide methylomic variations in the parahippocampal gyrus from 201 post mortem control, mild cognitive impaired, and AD brains. RESULTS: We identified 270 distinct differentially methylated regions (DMRs) associated with AD. We quantified the impact of these DMRs on each gene and each protein as well as gene and protein co-expression networks. DNA methylation had a profound impact on both AD-associated gene/protein modules and their key regulators. We further integrated the matched multi-omics data to show the impact of DNA methylation on chromatin accessibility, which further modulates gene and protein expression. DISCUSSION: The quantified impact of DNA methylation on gene and protein networks underlying AD identified potential upstream epigenetic regulators of AD. HIGHLIGHTS: A cohort of DNA methylation data in the parahippocampal gyrus was developed from 201 post mortem control, mild cognitive impaired, and Alzheimer's disease (AD) brains. Two hundred seventy distinct differentially methylated regions (DMRs) were found to be associated with AD compared to normal control. A metric was developed to quantify methylation impact on each gene and each protein. DNA methylation was found to have a profound impact on not only the AD-associated gene modules but also key regulators of the gene and protein networks. Key findings were validated in an independent multi-omics cohort in AD. The impact of DNA methylation on chromatin accessibility was also investigated by integrating the matched methylomic, epigenomic, transcriptomic, and proteomic data.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Epigénesis Genética , Redes Reguladoras de Genes , Proteómica , Metilación de ADN
9.
Genome Res ; 28(8): 1243-1252, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29945882

RESUMEN

Most common genetic risk variants associated with neuropsychiatric disease are noncoding and are thought to exert their effects by disrupting the function of cis regulatory elements (CREs), including promoters and enhancers. Within each cell, chromatin is arranged in specific patterns to expose the repertoire of CREs required for optimal spatiotemporal regulation of gene expression. To further understand the complex mechanisms that modulate transcription in the brain, we used frozen postmortem samples to generate the largest human brain and cell-type-specific open chromatin data set to date. Using the Assay for Transposase Accessible Chromatin followed by sequencing (ATAC-seq), we created maps of chromatin accessibility in two cell types (neurons and non-neurons) across 14 distinct brain regions of five individuals. Chromatin structure varies markedly by cell type, with neuronal chromatin displaying higher regional variability than that of non-neurons. Among our findings is an open chromatin region (OCR) specific to neurons of the striatum. When placed in the mouse, a human sequence derived from this OCR recapitulates the cell type and regional expression pattern predicted by our ATAC-seq experiments. Furthermore, differentially accessible chromatin overlaps with the genetic architecture of neuropsychiatric traits and identifies differences in molecular pathways and biological functions. By leveraging transcription factor binding analysis, we identify protein-coding and long noncoding RNAs (lncRNAs) with cell-type and brain region specificity. Our data provide a valuable resource to the research community and we provide this human brain chromatin accessibility atlas as an online database "Brain Open Chromatin Atlas (BOCA)" to facilitate interpretation.


Asunto(s)
Encéfalo/metabolismo , Cromatina/genética , Elementos Reguladores de la Transcripción/genética , Animales , Regulación de la Expresión Génica/genética , Humanos , Ratones , Regiones Promotoras Genéticas , Unión Proteica , Análisis de Secuencia de ADN , Transposasas
10.
Mol Psychiatry ; 24(11): 1685-1695, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-29740122

RESUMEN

Transcription at enhancers is a widespread phenomenon which produces so-called enhancer RNA (eRNA) and occurs in an activity-dependent manner. However, the role of eRNA and its utility in exploring disease-associated changes in enhancer function, and the downstream coding transcripts that they regulate, is not well established. We used transcriptomic and epigenomic data to interrogate the relationship of eRNA transcription to disease status and how genetic variants alter enhancer transcriptional activity in the human brain. We combined RNA-seq data from 537 postmortem brain samples from the CommonMind Consortium with cap analysis of gene expression and enhancer identification, using the assay for transposase-accessible chromatin followed by sequencing (ATACseq). We find 118 differentially transcribed eRNAs in schizophrenia and identify schizophrenia-associated gene/eRNA co-expression modules. Perturbations of a key module are associated with the polygenic risk scores. Furthermore, we identify genetic variants affecting expression of 927 enhancers, which we refer to as enhancer expression quantitative loci or eeQTLs. Enhancer expression patterns are consistent across studies, including differentially expressed eRNAs and eeQTLs. Combining eeQTLs with a genome-wide association study of schizophrenia identifies a genetic variant that alters enhancer function and expression of its target gene, GOLPH3L. Our novel approach to analyzing enhancer transcription is adaptable to other large-scale, non-poly-A depleted, RNA-seq studies.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Esquizofrenia/genética , Esquizofrenia/metabolismo , Adulto , Estudios de Casos y Controles , Cromatina/genética , Femenino , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino , Persona de Mediana Edad , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Corteza Prefrontal , Regiones Promotoras Genéticas/genética , Sitios de Carácter Cuantitativo/genética , ARN/genética , ARN no Traducido/genética , Transcripción Genética/genética
11.
Hum Mol Genet ; 26(10): 1942-1951, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28335009

RESUMEN

Open chromatin provides access to DNA-binding proteins for the correct spatiotemporal regulation of gene expression. Mapping chromatin accessibility has been widely used to identify the location of cis regulatory elements (CREs) including promoters and enhancers. CREs show tissue- and cell-type specificity and disease-associated variants are often enriched for CREs in the tissues and cells that pertain to a given disease. To better understand the role of CREs in neuropsychiatric disorders we applied the Assay for Transposase Accessible Chromatin followed by sequencing (ATAC-seq) to neuronal and non-neuronal nuclei isolated from frozen postmortem human brain by fluorescence-activated nuclear sorting (FANS). Most of the identified open chromatin regions (OCRs) are differentially accessible between neurons and non-neurons, and show enrichment with known cell type markers, promoters and enhancers. Relative to those of non-neurons, neuronal OCRs are more evolutionarily conserved and are enriched in distal regulatory elements. Transcription factor (TF) footprinting analysis identifies differences in the regulome between neuronal and non-neuronal cells and ascribes putative functional roles to a number of non-coding schizophrenia (SCZ) risk variants. Among the identified variants is a Single Nucleotide Polymorphism (SNP) proximal to the gene encoding SNX19. In vitro experiments reveal that this SNP leads to an increase in transcriptional activity. As elevated expression of SNX19 has been associated with SCZ, our data provide evidence that the identified SNP contributes to disease. These results represent the first analysis of OCRs and TF-binding sites in distinct populations of postmortem human brain cells and further our understanding of the regulome and the impact of neuropsychiatric disease-associated genetic risk variants.


Asunto(s)
Cromatina/patología , Regiones Promotoras Genéticas/genética , Esquizofrenia/fisiopatología , Encéfalo/metabolismo , Mapeo Encefálico/métodos , Cromatina/metabolismo , Inmunoprecipitación de Cromatina/métodos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Elementos de Facilitación Genéticos/genética , Expresión Génica/genética , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/fisiología , Esquizofrenia/genética , Nexinas de Clasificación/genética , Nexinas de Clasificación/metabolismo , Factores de Transcripción/genética
13.
Gene ; 902: 148198, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38266791

RESUMEN

Neuronal development is a highly regulated mechanism that is central to organismal function in animals. In humans, disruptions to this process can lead to a range of neurodevelopmental phenotypes, including Schizophrenia (SCZ). SCZ has a significant genetic component, whereby an individual with an SCZ affected family member is eight times more likely to develop the disease than someone with no family history of SCZ. By examining a combination of genomic, transcriptomic and epigenomic datasets, large-scale 'omics' studies aim to delineate the relationship between genetic variation and abnormal cellular activity in the SCZ brain. Herein, we provide a brief overview of some of the key omics methods currently being used in SCZ research, including RNA-seq, the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and high-throughput chromosome conformation capture (3C) approaches (e.g., Hi-C), as well as single-cell/nuclei iterations of these methods. We also discuss how these techniques are being employed to further our understanding of the genetic basis of SCZ, and to identify associated molecular pathways, biomarkers, and candidate drug targets.


Asunto(s)
Esquizofrenia , Animales , Humanos , Esquizofrenia/genética , Cromatina/genética , Cromatina/metabolismo , Secuenciación de Inmunoprecipitación de Cromatina , Encéfalo/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento
14.
bioRxiv ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39026764

RESUMEN

Background: Individuals with cocaine use disorder (CUD) who attempt abstinence experience craving and relapse, which poses challenges in treatment. Longitudinal studies linking behavioral manifestations in CUD to the blood transcriptome in living individuals are limited. Therefore, we investigated the connection between drug use behaviors during abstinence with blood transcriptomics. Methods: We conducted a comprehensive longitudinal study involving 12 subjects (9 males, 3 females) with CUD and RNA sequencing on blood collected at a drug-free baseline, and 3, 6 & 9 months thereafter. We categorized subjects into 2 responder groups (high-low) based on scores of drug use variables, and 3 responder groups (low-intermediate-high) on days of abstinence. We investigated differential expression and gene-transcript associations across responder groups at each time point. Lastly, we examined genes that are both co-expressed and showed dynamic expression with time. Results: Genes with significant transcript associations between high and. intermediate days of abstinence at 9 months were notably enriched for cannabis use disorder, drinks weekly, and coronary artery disease risk genes. Time-specific gene co-expression analysis prioritized transcripts related to immune processes, cell cycle, RNA-protein synthesis, and second messenger signaling for days of abstinence. Conclusion: We demonstrate that abstinence reflects robust changes in drug use behaviors and the blood transcriptome in CUD. We also highlight the importance of longitudinal studies to capture complex biological processes during abstinence in CUD.

15.
Trends Mol Med ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38821772

RESUMEN

Neuropsychiatric symptoms (NPSs) in Alzheimer's disease (AD) constitute multifaceted behavioral manifestations that reflect processes of emotional regulation, thinking, and social behavior. They are as prevalent in AD as cognitive impairment and develop independently during the progression of neurodegeneration. As studying NPSs in AD is clinically challenging, most AD research to date has focused on cognitive decline. In this opinion article we summarize emerging literature on the prevalence, time course, and the underlying genetic, molecular, and pathological mechanisms related to NPSs in AD. Overall, we propose that NPSs constitute a cluster of core symptoms in AD, and understanding their neurobiology can lead to a more holistic approach to AD research, paving the way for more accurate diagnostic tests and personalized treatments embracing the goals of precision medicine.

16.
Science ; 384(6698): eadg5136, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781388

RESUMEN

The complexity and heterogeneity of schizophrenia have hindered mechanistic elucidation and the development of more effective therapies. Here, we performed single-cell dissection of schizophrenia-associated transcriptomic changes in the human prefrontal cortex across 140 individuals in two independent cohorts. Excitatory neurons were the most affected cell group, with transcriptional changes converging on neurodevelopment and synapse-related molecular pathways. Transcriptional alterations included known genetic risk factors, suggesting convergence of rare and common genomic variants on neuronal population-specific alterations in schizophrenia. Based on the magnitude of schizophrenia-associated transcriptional change, we identified two populations of individuals with schizophrenia marked by expression of specific excitatory and inhibitory neuronal cell states. This single-cell atlas links transcriptomic changes to etiological genetic risk factors, contextualizing established knowledge within the human cortical cytoarchitecture and facilitating mechanistic understanding of schizophrenia pathophysiology and heterogeneity.


Asunto(s)
Predisposición Genética a la Enfermedad , Neuroglía , Neuronas , Corteza Prefrontal , Esquizofrenia , Análisis de la Célula Individual , Adulto , Femenino , Humanos , Masculino , Estudios de Cohortes , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Factores de Riesgo , Esquizofrenia/genética , Sinapsis/metabolismo , Transcriptoma , Adulto Joven , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Neuroglía/metabolismo
17.
Science ; 384(6698): eadh4265, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781378

RESUMEN

Nucleotide variants in cell type-specific gene regulatory elements in the human brain are risk factors for human disease. We measured chromatin accessibility in 1932 aliquots of sorted neurons and non-neurons from 616 human postmortem brains and identified 34,539 open chromatin regions with chromatin accessibility quantitative trait loci (caQTLs). Only 10.4% of caQTLs are shared between neurons and non-neurons, which supports cell type-specific genetic regulation of the brain regulome. Incorporating allele-specific chromatin accessibility improves statistical fine-mapping and refines molecular mechanisms that underlie disease risk. Using massively parallel reporter assays in induced excitatory neurons, we screened 19,893 brain QTLs and identified the functional impact of 476 regulatory variants. Combined, this comprehensive resource captures variation in the human brain regulome and provides insights into disease etiology.


Asunto(s)
Encefalopatías , Encéfalo , Cromatina , Regulación de la Expresión Génica , Elementos Reguladores de la Transcripción , Humanos , Alelos , Encéfalo/metabolismo , Encefalopatías/genética , Cromatina/metabolismo , Neuronas/metabolismo , Sitios de Carácter Cuantitativo , Masculino , Femenino
18.
Biol Psychiatry ; 95(2): 187-198, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37454787

RESUMEN

BACKGROUND: Converging evidence from large-scale genetic and postmortem studies highlights the role of aberrant neurotransmission and genetic regulation in brain-related disorders. However, identifying neuronal activity-regulated transcriptional programs in the human brain and understanding how changes contribute to disease remain challenging. METHODS: To better understand how the activity-dependent regulome contributes to risk for brain-related disorders, we profiled the transcriptomic and epigenomic changes following neuronal depolarization in human induced pluripotent stem cell-derived glutamatergic neurons (NGN2) from 6 patients with schizophrenia and 5 control participants. RESULTS: Multiomic data integration associated global patterns of chromatin accessibility with gene expression and identified enhancer-promoter interactions in glutamatergic neurons. Within 1 hour of potassium chloride-induced depolarization, independent of diagnosis, glutamatergic neurons displayed substantial activity-dependent changes in the expression of genes regulating synaptic function. Depolarization-induced changes in the regulome revealed significant heritability enrichment for schizophrenia and Parkinson's disease, adding to mounting evidence that sequence variation within activation-dependent regulatory elements contributes to the genetic risk for brain-related disorders. Gene coexpression network analysis elucidated interactions among activity-dependent and disease-associated genes and pointed to a key driver (NAV3) that interacted with multiple genes involved in axon guidance. CONCLUSIONS: Overall, we demonstrated that deciphering the activity-dependent regulome in glutamatergic neurons reveals novel targets for advanced diagnosis and therapy.


Asunto(s)
Células Madre Pluripotentes Inducidas , Esquizofrenia , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Regulación de la Expresión Génica , Neuronas/metabolismo , Encéfalo
19.
Sci Adv ; 10(21): eadh2588, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781336

RESUMEN

Sample-wise deconvolution methods estimate cell-type proportions and gene expressions in bulk tissue samples, yet their performance and biological applications remain unexplored, particularly in human brain transcriptomic data. Here, nine deconvolution methods were evaluated with sample-matched data from bulk tissue RNA sequencing (RNA-seq), single-cell/nuclei (sc/sn) RNA-seq, and immunohistochemistry. A total of 1,130,767 nuclei per cells from 149 adult postmortem brains and 72 organoid samples were used. The results showed the best performance of dtangle for estimating cell proportions and bMIND for estimating sample-wise cell-type gene expressions. For eight brain cell types, 25,273 cell-type eQTLs were identified with deconvoluted expressions (decon-eQTLs). The results showed that decon-eQTLs explained more schizophrenia GWAS heritability than bulk tissue or single-cell eQTLs did alone. Differential gene expressions associated with Alzheimer's disease, schizophrenia, and brain development were also examined using the deconvoluted data. Our findings, which were replicated in bulk tissue and single-cell data, provided insights into the biological applications of deconvoluted data in multiple brain disorders.


Asunto(s)
Encéfalo , Análisis de la Célula Individual , Transcriptoma , Humanos , Encéfalo/metabolismo , Análisis de la Célula Individual/métodos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Perfilación de la Expresión Génica/métodos , Esquizofrenia/genética , Esquizofrenia/metabolismo , Esquizofrenia/patología , Estudio de Asociación del Genoma Completo/métodos , Análisis de Secuencia de ARN/métodos , Adulto
20.
medRxiv ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38765961

RESUMEN

Adenosine-to-inosine (A-to-I) editing is a prevalent post-transcriptional RNA modification within the brain. Yet, most research has relied on postmortem samples, assuming it is an accurate representation of RNA biology in the living brain. We challenge this assumption by comparing A-to-I editing between postmortem and living prefrontal cortical tissues. Major differences were found, with over 70,000 A-to-I sites showing higher editing levels in postmortem tissues. Increased A-to-I editing in postmortem tissues is linked to higher ADAR1 and ADARB1 expression, is more pronounced in non-neuronal cells, and indicative of postmortem activation of inflammation and hypoxia. Higher A-to-I editing in living tissues marks sites that are evolutionarily preserved, synaptic, developmentally timed, and disrupted in neurological conditions. Common genetic variants were also found to differentially affect A-to-I editing levels in living versus postmortem tissues. Collectively, these discoveries illuminate the nuanced functions and intricate regulatory mechanisms of RNA editing within the human brain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA