Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Immunity ; 51(5): 871-884.e6, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31628054

RESUMEN

Group 3 innate lymphoid cells (ILC3s) sense environmental signals that are critical for gut homeostasis and host defense. However, the metabolite-sensing G-protein-coupled receptors that regulate colonic ILC3s remain poorly understood. We found that colonic ILC3s expressed Ffar2, a microbial metabolite-sensing receptor, and that Ffar2 agonism promoted ILC3 expansion and function. Deficiency of Ffar2 in ILC3s decreased their in situ proliferation and ILC3-derived interleukin-22 (IL-22) production. This led to impaired gut epithelial function characterized by altered mucus-associated proteins and antimicrobial peptides and increased susceptibility to colonic injury and bacterial infection. Ffar2 increased IL-22+ CCR6+ ILC3s and influenced ILC3 abundance in colonic lymphoid tissues. Ffar2 agonism differentially activated AKT or ERK signaling and increased ILC3-derived IL-22 via an AKT and STAT3 axis. Our findings suggest that Ffar2 regulates colonic ILC3 proliferation and function, and they identify an ILC3-receptor signaling pathway modulating gut homeostasis and pathogen defense.


Asunto(s)
Inmunidad Innata , Inmunidad Mucosa , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Linfocitos/inmunología , Linfocitos/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Biomarcadores , Citocinas/metabolismo , Susceptibilidad a Enfermedades , Microbioma Gastrointestinal/inmunología , Expresión Génica , Humanos , Inmunomodulación , Mucosa Intestinal/patología , Activación de Linfocitos/inmunología , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas c-akt , Receptores de Superficie Celular/agonistas , Factor de Transcripción STAT3/metabolismo
2.
Gastroenterology ; 158(5): 1359-1372.e9, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31917258

RESUMEN

BACKGROUND & AIMS: Intestinal microbes and their metabolites affect the development of colorectal cancer (CRC). Short-chain fatty acids are metabolites generated by intestinal microbes from dietary fiber. We investigated the mechanisms by which free fatty acid receptor 2 (FFAR2), a receptor for short-chain fatty acids that can affect the composition of the intestinal microbiome, contributes to the pathogenesis of CRC. METHODS: We performed studies with ApcMin/+ mice, ApcMin/+Ffar2-/- mice, mice with conditional disruption of Ffar2 in dendritic cells (DCs) (Ffar2fl/flCD11c-Cre mice), ApcMin/+Ffar2fl/flCD11c-Cre mice, and Ffar2fl/fl mice (controls); some mice were given dextran sodium sulfate to induce colitis, with or without a FFAR2 agonist or an antibody against interleukin 27 (IL27). Colon and tumor tissues were analyzed by histology, quantitative polymerase chain reaction, and 16S ribosomal RNA gene sequencing; lamina propria and mesenteric lymph node tissues were analyzed by RNA sequencing and flow cytometry. Intestinal permeability was measured after gavage with fluorescently labeled dextran. We collected data on colorectal tumors from The Cancer Genome Atlas. RESULTS: ApcMin/+Ffar2-/- mice developed significantly more spontaneous colon tumors than ApcMin/+ mice and had increased gut permeability before tumor development, associated with reduced expression of E-cadherin. Colon tumors from ApcMin/+Ffar2-/- mice had a higher number of bacteria than tumors from ApcMin/+ mice, as well as higher frequencies of CD39+CD8+ T cells and exhausted or dying T cells. DCs from ApcMin/+Ffar2-/- mice had an altered state of activation, increased death, and higher production of IL27. Administration of an antibody against IL27 reduced the numbers of colon tumors in ApcMin/+ mice with colitis. Frequencies of CD39+CD8+ T cells and IL27+ DCs were increased in colon lamina propria from Ffar2fl/flCD11c-Cre mice with colitis compared with control mice or mice without colitis. ApcMin/+Ffar2fl/flCD11c-Cre mice developed even more tumors than ApcMin/+Ffar2fl/fl mice, and their tumors had even higher numbers of IL27+ DCs. ApcMin/+ mice with colitis given the FFAR2 agonist developed fewer colon tumors, with fewer IL27+ DCs, than mice not given the agonist. DCs incubated with the FFAR2 agonist no longer had gene expression patterns associated with activation or IL27 production. CONCLUSIONS: Loss of FFAR2 promotes colon tumorigenesis in mice by reducing gut barrier integrity, increasing tumor bacterial load, promoting exhaustion of CD8+ T cells, and overactivating DCs, leading to their death. Antibodies against IL27 and an FFAR2 agonist reduce tumorigenesis in mice and might be developed for the treatment of CRC.


Asunto(s)
Colitis/patología , Neoplasias del Colon/inmunología , Células Dendríticas/inmunología , Microbioma Gastrointestinal/inmunología , Interleucinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/genética , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Carcinogénesis/inmunología , Colitis/inducido químicamente , Colitis/inmunología , Colon/efectos de los fármacos , Colon/microbiología , Colon/patología , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Células Dendríticas/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ácidos Grasos no Esterificados/metabolismo , Femenino , Humanos , Interleucinas/inmunología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Masculino , Ratones , Ratones Noqueados , Permeabilidad , Cultivo Primario de Células , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética
3.
Artículo en Inglés | MEDLINE | ID: mdl-26759600

RESUMEN

The obesity epidemic has emerged over the past few decades and is thought to be a result of both genetic and environmental factors. A newly identified factor, the gut microbiota, which is a bacterial ecosystem residing within the gastrointestinal tract of humans, has now been implicated in the obesity epidemic. Importantly, this bacterial community is impacted by external environmental factors through a variety of undefined mechanisms. We focus this review on how the external environment may impact the gut microbiota by considering, the host's geographic location 'human geography', and behavioral factors (diet and physical activity). Moreover, we explore the relationship between the gut microbiota and obesity with these external factors. And finally, we highlight here how an epidemiologic model can be utilized to elucidate causal relationships between the gut microbiota and external environment independently and collectively, and how this will help further define this important new factor in the obesity epidemic.

4.
Am J Physiol Endocrinol Metab ; 309(10): E840-51, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26394664

RESUMEN

The structure of the human gastrointestinal microbiota can change during pregnancy, which may influence gestational metabolism; however, a mechanism of action remains unclear. Here we observed that in wild-type (WT) mice the relative abundance of Actinobacteria and Bacteroidetes increased during pregnancy. Along with these changes, short-chain fatty acids (SCFAs), which are mainly produced through gut microbiota fermentation, significantly changed in both the cecum and peripheral blood throughout gestation in these mice. SCFAs are recognized by G protein-coupled receptors (GPCRs) such as free fatty acid receptor-2 (FFA2), and we have previously demonstrated that the fatty acid receptor-2 gene (Ffar2) expression is higher in pancreatic islets during pregnancy. Using female Ffar2-/- mice, we explored the physiological relevance of signaling through this GPCR and found that Ffar2-deficient female mice developed fasting hyperglycemia and impaired glucose tolerance in the setting of impaired insulin secretion compared with WT mice during, but not before, pregnancy. Insulin tolerance tests were similar in Ffar2-/- and WT mice before and during pregnancy. Next, we examined the role of FFA2 in gestational ß-cell mass, observing that Ffar2-/- mice had diminished gestational expansion of ß-cells during pregnancy. Interestingly, mouse genotype had no significant impact on the composition of the gut microbiome, but did affect the observed SCFA profiles, suggesting a functional difference in the microbiota. Together, these results suggest a potential link between increased Ffar2 expression in islets and the alteration of circulating SCFA levels, possibly explaining how changes in the gut microbiome contribute to gestational glucose homeostasis.


Asunto(s)
Diabetes Gestacional/metabolismo , Ácidos Grasos Volátiles/metabolismo , Microbioma Gastrointestinal , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Receptores de Superficie Celular/metabolismo , Actinobacteria/clasificación , Actinobacteria/crecimiento & desarrollo , Actinobacteria/aislamiento & purificación , Actinobacteria/metabolismo , Animales , Bacteroidetes/clasificación , Bacteroidetes/crecimiento & desarrollo , Bacteroidetes/aislamiento & purificación , Bacteroidetes/metabolismo , Ciego/metabolismo , Ciego/microbiología , Diabetes Gestacional/sangre , Diabetes Gestacional/microbiología , Ácidos Grasos Volátiles/sangre , Femenino , Fermentación , Contenido Digestivo/química , Contenido Digestivo/microbiología , Insulina/sangre , Secreción de Insulina , Ratones Endogámicos C57BL , Ratones Noqueados , Tipificación Molecular , Embarazo , Mantenimiento del Embarazo , Análisis de Componente Principal , Receptores de Superficie Celular/agonistas , Receptores de Superficie Celular/genética , Tenericutes/clasificación , Tenericutes/crecimiento & desarrollo , Tenericutes/aislamiento & purificación , Tenericutes/metabolismo , Técnicas de Cultivo de Tejidos
5.
Biochim Biophys Acta ; 1806(1): 108-21, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20462514

RESUMEN

Investigations over the last decade have established the essential role of growth factors and their receptors during angiogenesis and carcinogenesis. The vascular endothelial growth factor receptor (VEGFR) family in mammals contains three members, VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1) and VEGFR-3 (Flt-4), which are transmembrane tyrosine kinase receptors that regulate the formation of blood and lymphatic vessels. In the early 1990s, the above VEGFR was structurally characterized by cDNA cloning. Among these three receptors, VEGFR-2 is generally recognized to have a principal role in mediating VEGF-induced responses. VEGFR-2 is considered as the earliest marker for endothelial cell development. Importantly, VEGFR-2 directly regulates tumor angiogenesis. Therefore, several inhibitors of VEGFR-2 have been developed and many of them are now in clinical trials. In addition to targeting endothelial cells, the VEGF/VEGFR-2 system works as an essential autocrine/paracrine process for cancer cell proliferation and survival. Recent studies mark the continuous and increased interest in this related, but distinct, function of VEGF/VEGFR-2 in cancer cells: the autocrine/paracrine loop. Several mechanisms regulate VEGFR-2 levels and modulate its role in tumor angiogenesis and physiologic functions, i.e.: cellular localization/trafficking, regulation of cis-elements of promoter, epigenetic regulation and signaling from Notch, cytokines/growth factors and estrogen, etc. In this review, we will focus on updated information regarding VEGFR-2 research with respect to the molecular mechanisms of VEGFR-2 regulation in human breast cancer. Investigations in the activation, function, and regulation of VEGFR-2 in breast cancer will allow the development of new pharmacological strategies aimed at directly targeting cancer cell proliferation and survival.


Asunto(s)
Neoplasias de la Mama/etiología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/fisiología , Inhibidores de la Angiogénesis/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Supervivencia Celular , Epigénesis Genética , Femenino , Humanos , Regiones Promotoras Genéticas , Transducción de Señal , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/química , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
6.
Metabolites ; 11(1)2021 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-33467110

RESUMEN

The transition from ß-cell compensation to ß-cell failure is not well understood. Previous works by our group and others have demonstrated a role for Prostaglandin EP3 receptor (EP3), encoded by the Ptger3 gene, in the loss of functional ß-cell mass in Type 2 diabetes (T2D). The primary endogenous EP3 ligand is the arachidonic acid metabolite prostaglandin E2 (PGE2). Expression of the pancreatic islet EP3 and PGE2 synthetic enzymes and/or PGE2 excretion itself have all been shown to be upregulated in primary mouse and human islets isolated from animals or human organ donors with established T2D compared to nondiabetic controls. In this study, we took advantage of a rare and fleeting phenotype in which a subset of Black and Tan BRachyury (BTBR) mice homozygous for the Leptinob/ob mutation-a strong genetic model of T2D-were entirely protected from fasting hyperglycemia even with equal obesity and insulin resistance as their hyperglycemic littermates. Utilizing this model, we found numerous alterations in full-body metabolic parameters in T2D-protected mice (e.g., gut microbiome composition, circulating pancreatic and incretin hormones, and markers of systemic inflammation) that correlate with improvements in EP3-mediated ß-cell dysfunction.

7.
Genom Data ; 9: 10-7, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27330996

RESUMEN

Emerging evidence suggests molecular chaperones have a role in the pathogenesis of obesity and diabetes. As αB-crystallin and HspB2 are molecular chaperones and data suggests their expression is elevated in the skeletal muscle of diabetic and obese animals, we sought to determine if αB-crystallin and HspB2 collectively play a functional role in the metabolic phenotype of diet-induced obesity. Using αB-crystallin/HspB2 knockout and littermate wild-type controls, it was observed that mice on the high fat diet gained more weight as compared to the normal chow group and genotype did not impact this weight gain. To test if the genotype and/or diet influenced glucose homeostasis, intraperitoneal glucose challenge was performed. While similar on normal chow diet, wild-type mice on the high fat diet exhibited higher glucose levels during the glucose challenge compared to the αB-crystallin/HspB2 knockout mice. Although wild-type mice had higher glucose levels, insulin levels were similar for both genotypes. Insulin tolerance testing revealed that αB-crystallin/HspB2 knockout mice were more sensitive to insulin, leading to lower glucose levels over time, which is indicative of a difference in insulin sensitivity between the genotypes on a high fat diet. Transcriptome analyses of skeletal muscle in αB-crystallin/HspB2 knockout and wild-type mice on a normal or high fat diet revealed reductions in cytokine pathway genes in αB-crystallin/HspB2 knockout mice, which may contribute to their improved insulin sensitivity. Collectively, these data reveal that αB-crystallin/HspB2 plays a role in development of insulin resistance during a high fat diet challenge.

8.
PLoS One ; 11(12): e0167837, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27959892

RESUMEN

During the insulin resistant phase of pregnancy, the mRNA expression of free fatty acid 2 receptor (Ffar2) is upregulated and as we recently reported, this receptor contributes to insulin secretion and pancreatic beta cell mass expansion in order to maintain normal glucose homeostasis during pregnancy. As impaired gestational glucose levels can affect metabolic health of offspring, we aimed to explore the role of maternal Ffar2 expression during pregnancy on the metabolic health of offspring and also the effects of antibiotics, which have been shown to disrupt gut microbiota fermentative activity (the source of the FFA2 ligands) on gestational glucose homeostasis. We found that maternal Ffar2 expression and impaired glucose tolerance during pregnancy had no effect on the growth rates, ad lib glucose and glucose tolerance in the offspring between 3 and 6 weeks of age. To disrupt short chain fatty acid production, we chronically treated WT mice and Ffar2-/- mice with broad range antibiotics and further compared their glucose tolerance prior to pregnancy and at gestational day 15, and also quantified cecum and plasma SCFAs. We found that during pregnancy antibiotic treatment reduced the levels of SCFAs in the cecum of the mice, but resulted in elevated levels of plasma SCFAs and altered concentrations of individual SCFAs. Along with these changes, gestational glucose tolerance in WT mice, but not Ffar2-/- mice improved while on antibiotics. Additional data showed that gestational glucose tolerance worsened in Ffar2-/- mice during a second pregnancy. Together, these results indicate that antibiotic treatment alone is inadequate to deplete plasma SCFA concentrations, and that modulation of gut microbiota by antibiotics does not disrupt the contribution of FFA2 to gestational glucose tolerance.


Asunto(s)
Antibacterianos/efectos adversos , Intolerancia a la Glucosa/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Glucemia/metabolismo , Ácidos Grasos Volátiles/sangre , Ácidos Grasos Volátiles/metabolismo , Femenino , Intolerancia a la Glucosa/etiología , Masculino , Ratones , Embarazo , Receptores Acoplados a Proteínas G/genética
9.
Sci Rep ; 6: 28159, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27324831

RESUMEN

The regulation of pancreatic ß cell mass is a critical factor to help maintain normoglycemia during insulin resistance. Nutrient-sensing G protein-coupled receptors (GPCR) contribute to aspects of ß cell function, including regulation of ß cell mass. Nutrients such as free fatty acids (FFAs) contribute to precise regulation of ß cell mass by signaling through cognate GPCRs, and considerable evidence suggests that circulating FFAs promote ß cell expansion by direct and indirect mechanisms. Free Fatty Acid Receptor 2 (FFA2) is a ß cell-expressed GPCR that is activated by short chain fatty acids, particularly acetate. Recent studies of FFA2 suggest that it may act as a regulator of ß cell function. Here, we set out to explore what role FFA2 may play in regulation of ß cell mass. Interestingly, Ffar2(-/-) mice exhibit diminished ß cell mass at birth and throughout adulthood, and increased ß cell death at adolescent time points, suggesting a role for FFA2 in establishment and maintenance of ß cell mass. Additionally, activation of FFA2 with Gαq/11-biased agonists substantially increased ß cell proliferation in in vitro and ex vivo proliferation assays. Collectively, these data suggest that FFA2 may be a novel therapeutic target to stimulate ß cell growth and proliferation.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Páncreas/patología , Receptores de Superficie Celular/metabolismo , Animales , Supervivencia Celular , Células Cultivadas , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Ácidos Grasos no Esterificados/metabolismo , Ácidos Grasos Volátiles/metabolismo , Humanos , Resistencia a la Insulina , Células Secretoras de Insulina/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Superficie Celular/genética , Transducción de Señal
10.
Mol Endocrinol ; 29(7): 1055-66, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26075576

RESUMEN

G protein-coupled receptors have been well described to contribute to the regulation of glucose-stimulated insulin secretion (GSIS). The short-chain fatty acid-sensing G protein-coupled receptor, free fatty acid receptor 2 (FFAR2), is expressed in pancreatic ß-cells, and in rodents, its expression is altered during insulin resistance. Thus, we explored the role of FFAR2 in regulating GSIS. First, assessing the phenotype of wild-type and Ffar2(-/-) mice in vivo, we observed no differences with regard to glucose homeostasis on normal or high-fat diet, with a marginally significant defect in insulin secretion in Ffar2(-/-) mice during hyperglycemic clamps. In ex vivo insulin secretion studies, we observed diminished GSIS from Ffar2(-/-) islets relative to wild-type islets under high-glucose conditions. Further, in the presence of acetate, the primary endogenous ligand for FFAR2, we observed FFAR2-dependent potentiation of GSIS, whereas FFAR2-specific agonists resulted in either potentiation or inhibition of GSIS, which we found to result from selective signaling through either Gαq/11 or Gαi/o, respectively. Lastly, in ex vivo insulin secretion studies of human islets, we observed that acetate and FFAR2 agonists elicited different signaling properties at human FFAR2 than at mouse FFAR2. Taken together, our studies reveal that FFAR2 signaling occurs by divergent G protein pathways that can selectively potentiate or inhibit GSIS in mouse islets. Further, we have identified important differences in the response of mouse and human FFAR2 to selective agonists, and we suggest that these differences warrant consideration in the continued investigation of FFAR2 as a novel type 2 diabetes target.


Asunto(s)
Acetatos/metabolismo , Insulina/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Dieta Alta en Grasa , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Técnica de Clampeo de la Glucosa , Prueba de Tolerancia a la Glucosa , Humanos , Insulina/farmacología , Secreción de Insulina , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Receptores de Superficie Celular/agonistas , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/deficiencia , Transducción de Señal/efectos de los fármacos , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA