Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Med ; 20(5): e1004226, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37200241

RESUMEN

BACKGROUND: Growing evidence suggests an important contribution of airborne transmission to the overall spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), in particular via smaller particles called aerosols. However, the contribution of school children to SARS-CoV-2 transmission remains uncertain. The aim of this study was to assess transmission of airborne respiratory infections and the association with infection control measures in schools using a multiple-measurement approach. METHODS AND FINDINGS: We collected epidemiological (cases of Coronavirus Disease 2019 (COVID-19)), environmental (CO2, aerosol and particle concentrations), and molecular data (bioaerosol and saliva samples) over 7 weeks from January to March 2022 (Omicron wave) in 2 secondary schools (n = 90, average 18 students/classroom) in Switzerland. We analyzed changes in environmental and molecular characteristics between different study conditions (no intervention, mask wearing, air cleaners). Analyses of environmental changes were adjusted for different ventilation, the number of students in class, school and weekday effects. We modeled disease transmission using a semi-mechanistic Bayesian hierarchical model, adjusting for absent students and community transmission. Molecular analysis of saliva (21/262 positive) and airborne samples (10/130) detected SARS-CoV-2 throughout the study (weekly average viral concentration 0.6 copies/L) and occasionally other respiratory viruses. Overall daily average CO2 levels were 1,064 ± 232 ppm (± standard deviation). Daily average aerosol number concentrations without interventions were 177 ± 109 1/cm3 and decreased by 69% (95% CrI 42% to 86%) with mask mandates and 39% (95% CrI 4% to 69%) with air cleaners. Compared to no intervention, the transmission risk was lower with mask mandates (adjusted odds ratio 0.19, 95% CrI 0.09 to 0.38) and comparable with air cleaners (1.00, 95% CrI 0.15 to 6.51). Study limitations include possible confounding by period as the number of susceptible students declined over time. Furthermore, airborne detection of pathogens document exposure but not necessarily transmission. CONCLUSIONS: Molecular detection of airborne and human SARS-CoV-2 indicated sustained transmission in schools. Mask mandates were associated with greater reductions in aerosol concentrations than air cleaners and with lower transmission. Our multiple-measurement approach could be used to continuously monitor transmission risk of respiratory infections and the effectiveness of infection control measures in schools and other congregate settings.


Asunto(s)
COVID-19 , Infecciones del Sistema Respiratorio , Niño , Humanos , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/prevención & control , Suiza/epidemiología , Teorema de Bayes , Dióxido de Carbono , Aerosoles y Gotitas Respiratorias , Instituciones Académicas
2.
Mol Ther ; 24(10): 1797-1805, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27456062

RESUMEN

Spinal Muscular Atrophy is due to the loss of SMN1 gene function. The duplicate gene SMN2 produces some, but not enough, SMN protein because most transcripts lack exon 7. Thus, promoting the inclusion of this exon is a therapeutic option. We show that a somatic gene therapy using the gene for a modified U7 RNA which stimulates this splicing has a profound and persistent therapeutic effect on the phenotype of a severe Spinal Muscular Atrophy mouse model. To this end, the U7 gene and vector and the production of pure, highly concentrated self-complementary (sc) adenovirus-associated virus 9 vector particles were optimized. Introduction of the functional vector into motoneurons of newborn Spinal Muscular Atrophy mice by intracerebroventricular injection led to a highly significant, dose-dependent increase in life span and improvement of muscle functions. Besides the central nervous system, the therapeutic U7 RNA was expressed in the heart and liver which may additionally have contributed to the observed therapeutic efficacy. This approach provides an additional therapeutic option for Spinal Muscular Atrophy and could also be adapted to treat other diseases of the central nervous system with regulatory small RNA genes.


Asunto(s)
Adenoviridae/genética , Terapia Genética/métodos , Atrofia Muscular Espinal/terapia , ARN Nuclear Pequeño/administración & dosificación , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Animales , Modelos Animales de Enfermedad , Vectores Genéticos/administración & dosificación , Hígado/metabolismo , Ratones , Ratones Transgénicos , Atrofia Muscular Espinal/genética , Miocardio/metabolismo , Empalme del ARN , ARN Nuclear Pequeño/farmacología
3.
Clin Microbiol Infect ; 30(6): 829.e1-829.e4, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38467247

RESUMEN

OBJECTIVES: To compare the prevalence of SARS-CoV-2 and other respiratory viruses in saliva and bioaerosols between two winters and to model the probability of virus detection in classroom air for different viruses. METHODS: We analysed saliva, air, and air cleaner filter samples from studies conducted in two Swiss secondary schools (students aged 14-17 years) over 7 weeks during the winters of 2021/22 and 2022/23. Two bioaerosol sampling devices and high efficiency particulate air (HEPA) filters from air cleaners were used to collect airborne virus particles in four classrooms. Daily bioaerosol samples were pooled for each sampling device before PCR analysis of a panel of 19 respiratory viruses and viral subtypes. The probability of detection of airborne viruses was modelled using an adjusted Bayesian logistic regression model. RESULTS: Three classes (58 students) participated in 2021/22, and two classes (38 students) in 2022/23. During winter 2021/22, SARS-CoV-2 dominated in saliva (19 of 21 positive samples) and bioaerosols (9 of 10). One year later, there were 50 positive saliva samples, mostly influenza B, rhinovirus, and adenovirus, and two positive bioaerosol samples, one rhinovirus and one adenovirus. The weekly probability of airborne detection was 34% (95% credible interval [CrI] 22-47%) for SARS-CoV-2 and 10% (95% CrI 5-16%) for other respiratory viruses. DISCUSSION: There was a distinct shift in the distribution of respiratory viruses from SARS-CoV-2 during the omicron wave to other respiratory viruses one year later. SARS-CoV-2 is more likely to be detected in the air than other endemic respiratory viruses, possibly reflecting differences in viral characteristics and the composition of virus-carrying particles that facilitate airborne long-range transmission.


Asunto(s)
Microbiología del Aire , COVID-19 , SARS-CoV-2 , Saliva , Instituciones Académicas , Humanos , Saliva/virología , Adolescente , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/genética , COVID-19/transmisión , COVID-19/diagnóstico , COVID-19/virología , COVID-19/epidemiología , Masculino , Femenino , Estaciones del Año , Suiza/epidemiología , Virus/aislamiento & purificación , Virus/clasificación , Virus/genética , Aerosoles/análisis
4.
Open Forum Infect Dis ; 11(4): ofae169, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38665173

RESUMEN

Background: Using a multiple-measurement approach, we examined the real-world effectiveness of portable HEPA air filtration devices (air cleaners) in a school setting. Methods: We collected data over 7 weeks during winter 2022/2023 in 2 Swiss secondary school classes: environmental (CO2, particle concentrations), epidemiologic (absences related to respiratory infections), audio (coughing), and molecular (bioaerosol and saliva samples). Using a crossover design, we compared particle concentrations, coughing, and risk of infection with and without air cleaners. Results: All 38 students participated (age, 13-15 years). With air cleaners, mean particle concentration decreased by 77% (95% credible interval, 63%-86%). There were no differences in CO2 levels. Absences related to respiratory infections were 22 without air cleaners vs 13 with them. Bayesian modeling suggested a reduced risk of infection, with a posterior probability of 91% and a relative risk of 0.73 (95% credible interval, 0.44-1.18). Coughing also tended to be less frequent (posterior probability, 93%), indicating that fewer symptomatic students were in class. Molecular analysis detected mainly non-SARS-CoV-2 viruses in saliva (50/448 positive) but not in bioaerosols (2/105) or on the HEPA filters of the air cleaners (4/160). The molecular detection rate in saliva was similar with and without air cleaners. Spatiotemporal analysis of positive saliva samples identified several likely transmissions. Conclusions: Air cleaners improved air quality and showed potential benefits in reducing respiratory infections. Airborne detection of non-SARS-CoV-2 viruses was rare, suggesting that these viruses may be more difficult to detect in the air. Future studies should examine the importance of close contact and long-range transmission and the cost-effectiveness of using air cleaners.

5.
Artículo en Inglés | MEDLINE | ID: mdl-37544608

RESUMEN

OBJECTIVES: The diagnosis of larval cestodiases in humans primarily depends on using imaging techniques in combination with serological tests. However, in case of atypical imaging results, negative serology results due to immunosuppression, or infection with rare taeniid species, traditional diagnostic tools may not provide a definitive species-level diagnosis. We aimed to validate a rapid, reliable, and cost-effective single-step real-time PCR method that can identify and differentiate larval cestodiases from biopsy material. METHODS: We validated a real-time PCR technique able to distinguish Echinococcus multilocularis, E. granulosus sensu lato (s.l.), and Taenia spp. from biopsy or cytology material in a single-step analysis. Further Sanger sequencing of E. granulosus s.l. and Taenia spp. amplicons enables differentiation of various Echinococcus and Taenia species. The assay was validated on (a) a reference sample collection of 69 clinical and veterinary cases confirmed by imaging, serology, and morphological analysis, (b) 38 routine human patient samples confirmed for aforementioned pathogens by a conventional end-point PCR, and (c) 127 samples from patients with suspected echinococcosis that were submitted to our laboratory for diagnostic analysis. RESULTS: Compared to a conventional reference end-point PCR approach, the quadruplex real-time PCR exhibited a lower limit of detection in a serial dilution with 5-log dilutions for all three targets (2 log for E. multilocularis, 1 log for E. granulosus s.s., and 1 log for T. saginata). We were able to detect DNA from E. multilocularis, E. granulosus s.l. (E. granulosus s.s., E. canadensis, E. ortleppi, and E. felidis), a wide range of Taenia spp., as well as from non-echinococcal metacestodes such as Hydatigera taeniaformis, Hymenolepis spp., Versteria sp., and Spirometra erinaceieuropaei. DISCUSSION: We suggest that the presented real-time PCR method is a suitable tool to be routinely used in a clinical microbiology laboratory to rapidly detect and identify larval cestodiases in human tissue.

6.
medRxiv ; 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38234723

RESUMEN

Background: Using a multiple-measurement approach, we examined the real-world effectiveness of portable HEPA-air filtration devices (air cleaners) in a school setting. Methods: We collected environmental (CO2, particle concentrations), epidemiological (absences related to respiratory infections), audio (coughing), and molecular data (bioaerosol and saliva samples) over seven weeks during winter 2022/2023 in two Swiss secondary school classes. Using a cross-over study design, we compared particle concentrations, coughing, and the risk of infection with vs without air cleaners. Results: All 38 students (age 13-15 years) participated. With air cleaners, mean particle concentration decreased by 77% (95% credible interval 63%-86%). There were no differences in CO2 levels. Absences related to respiratory infections were 22 without vs 13 with air cleaners. Bayesian modeling suggested a reduced risk of infection, with a posterior probability of 91% and a relative risk of 0.73 (95% credible interval 0.44-1.18). Coughing also tended to be less frequent (posterior probability 93%). Molecular analysis detected mainly non-SARS-CoV-2 viruses in saliva (50/448 positive), but not in bioaerosols (2/105 positive) or HEPA-filters (4/160). The detection rate was similar with vs without air cleaners. Spatiotemporal analysis of positive saliva samples identified several likely transmissions. Conclusions: Air cleaners improved air quality, showed a potential benefit in reducing respiratory infections, and were associated with less coughing. Airborne detection of non-SARS-CoV-2 viruses was rare, suggesting that these viruses may be more difficult to detect in the air. Future studies should examine the importance of close contact and long-range transmission, and the cost-effectiveness of using air cleaners.

7.
Open Forum Infect Dis ; 9(9): ofac428, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36119959

RESUMEN

Microbes unculturable in vitro remain diagnostically challenging, dependent historically on clinical findings, histology, or targeted molecular detection. We applied whole-genome sequencing directly from tissue to diagnose infections with mycobacteria (leprosy) and parasites (coenurosis). Direct pathogen DNA sequencing provides flexible solutions to diagnosis of difficult pathogens in diverse contexts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA