Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Semin Cancer Biol ; 79: 83-90, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-32920125

RESUMEN

Several studies have shown that cancer cells can be "phenotypically reversed", thus achieving a "tumor reversion", by losing malignant hallmarks as migrating and invasive capabilities. These findings suggest that genome activity can switch to assume a different functional configuration, i.e. a different Gene Regulatory Network pattern. Indeed, once "destabilized", cancer cells enter into a critical transition phase that can be adequately "oriented" by yet unidentified morphogenetic factors - acting on both cells and their microenvironment - that trigger an orchestrated array of structural and epigenetic changes. Such process can bypass genetic abnormalities, through rerouting cells toward a benign phenotype. Oocytes and embryonic tissues, obtained by animals and humans, display such "reprogramming" capability, as a number of yet scarcely identified embryo-derived factors can revert the malignant phenotype of several types of tumors. Mechanisms involved in the reversion process include the modification of cell-microenvironment cross talk (mostly through cytoskeleton reshaping), chromatin opening, demethylation, and epigenetic changes, modulation of biochemical pathways, comprising TCTP-p53, PI3K-AKT, FGF, Wnt, and TGF-ß-dependent cascades. Results herein discussed promise to open new perspectives not only in the comprehension of cancer biology but also toward different therapeutic options, as suggested by a few preliminary clinical studies.


Asunto(s)
Técnicas de Reprogramación Celular , Reprogramación Celular/genética , Epigénesis Genética/genética , Neoplasias/genética , Neoplasias/terapia , Transformación Celular Neoplásica/efectos de los fármacos , Ensamble y Desensamble de Cromatina/genética , Citoesqueleto/genética , Desmetilación del ADN , Humanos , Neoplasias/patología , Microambiente Tumoral/fisiología
2.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37511434

RESUMEN

DNA methylation, the main epigenetic modification regulating gene expression, plays a role in the pathophysiology of neurodegeneration. Previous evidence indicates that 5'-flanking hypomethylation of PSEN1, a gene involved in the amyloidogenic pathway in Alzheimer's disease (AD), boosts the AD-like phenotype in transgenic TgCRND8 mice. Supplementation with S-adenosylmethionine (SAM), the methyl donor in the DNA methylation reactions, reverts the pathological phenotype. Several studies indicate that epigenetic signatures, driving the shift between normal and diseased aging, can be acquired during the first stages of life, even in utero, and manifest phenotypically later on in life. Therefore, we decided to test whether SAM supplementation during the perinatal period (i.e., supplementing the mothers from mating to weaning) could exert a protective role towards AD-like symptom manifestation. We therefore compared the effect of post-weaning vs. perinatal SAM treatment in TgCRND8 mice by assessing PSEN1 methylation and expression and the development of amyloid plaques. We found that short-term perinatal supplementation was as effective as the longer post-weaning supplementation in repressing PSEN1 expression and amyloid deposition in adult mice. These results highlight the importance of epigenetic memory and methyl donor availability during early life to promote healthy aging and stress the functional role of non-CpG methylation.


Asunto(s)
Enfermedad de Alzheimer , S-Adenosilmetionina , Embarazo , Femenino , Ratones , Animales , S-Adenosilmetionina/metabolismo , Memoria Epigenética , Metilación de ADN , Ratones Transgénicos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Suplementos Dietéticos
3.
J Sci Food Agric ; 103(15): 7569-7579, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37418584

RESUMEN

BACKGROUND: Hemicellulose extraction from lignocellulosic biomasses has gained interest over the years, and hydrothermal treatment is one of the most common methods employed for this purpose. This work aimed to deeply study hazelnut (Corylus avellana L.) shells as a new source of dietary fibre, evaluating the effect of hydrothermal treatment temperatures on the type and structure of fibre extracted, but also on the formation of side-products derived from lignocellulose degradation. RESULTS: Different process temperatures led to diverse polysaccharides in the hydrothermal extract. Pectin was identified for the first time in hazelnut shells when experimenting with extraction at 125 °C, whereas at 150 °C a heterogeneous mixture of pectin, xylan, and xylo-oligosaccharides was present. The highest yield in terms of total fibre was gained at 150 and 175 °C, and then decreased again at 200 °C. Finally, more than 500 compounds from different chemical classes were putatively identified and they appeared to be present in the extracted fibre with a different distribution and relative amount, depending on the heat treatment severity. A generally high content of phenols, phenyls, oligosaccharides, dehydro-sugars, and furans was observed. CONCLUSIONS: Modulation of the hydrothermal treatment temperature allows fibre extracts with very different compositions, and therefore different potential end uses, to be obtained from hazelnut shells. A sequential temperature-based fractionation approach, as a function of the severity of the extraction parameters, can also be considered. Nevertheless, the study of the side-compounds formed from lignocellulosic matrix degradation, as a function of the applied temperature, needs to be fully addressed for a safe introduction of the fibre extract within the food chain. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Corylus , Corylus/química , Temperatura , Pectinas/metabolismo , Oligosacáridos/química , Fibras de la Dieta/metabolismo
4.
Anal Chem ; 94(45): 15558-15563, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36318963

RESUMEN

The development of electrochemical strips, as extremely powerful diagnostic tools, has received much attention in the field of sensor analysis and, in particular, the detection of nucleic acids in complex matrixes is a hot topic in the electroanalytical area, especially when directed toward the development of emerging technologies, for the purpose of facilitating personal healthcare. One of the major diseases for which early diagnosis is crucial is represented by Alzheimer's disease (AD). AD is a progressive neurodegenerative disease, and it is the most common cause of dementia worldwide. In this context microRNAs (miRNAs), which are small noncoding RNAs, have recently been highlighted for their promising role as biomarkers for early diagnosis. In particular, miRNA-29 represents a class of miRNAs known to regulate pathogenesis of AD. In this work we developed an electrochemical printed strip for the detection of miRNA-29a at low levels. The architecture was characterized by the presence of gold nanoparticles (AuNPs) and an anti-miRNA-29a probe labeled with a redox mediator. The novel analytical tool has been characterized with microscale thermophoresis and electrochemical methods, and it has been optimized by selection of the most appropriate probe density to detect low target concentration. The present tool was capable to detect miRNA-29a both in standard solution and in serum, respectively, down to 0.15 and 0.2 nM. The platform highlighted good repeatability (calculated as the relative standard deviation) of ca. 10% and satisfactory selectivity in the presence of interfering species. This work has the objective to open a way for the study and possible early diagnosis of a physically and socially devastating disease such as Alzheimer's. The results demonstrate the suitability of this approach in terms of ease of use, time of production, sensitivity, and applicability.


Asunto(s)
Enfermedad de Alzheimer , Técnicas Biosensibles , Nanopartículas del Metal , MicroARNs , Enfermedades Neurodegenerativas , Humanos , Oro/química , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Nanopartículas del Metal/química , Biomarcadores , MicroARNs/análisis , Técnicas Biosensibles/métodos
5.
Int J Mol Sci ; 21(3)2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-32023814

RESUMEN

Alzheimer's disease (AD) is characterized by the abnormal accumulation of amyloid-ß (Aß) peptides in the brain. The pathological process has not yet been clarified, although dysfunctional transport of Aß across the blood-brain barrier (BBB) appears to be integral to disease development. At present, no effective therapeutic treatment against AD exists, and the adoption of a ketogenic diet (KD) or ketone body (KB) supplements have been investigated as potential new therapeutic approaches. Despite experimental evidence supporting the hypothesis that KBs reduce the Aß load in the AD brain, little information is available about the effect of KBs on BBB and their effect on Aß transport. Therefore, we used a human in vitro BBB model, brain-like endothelial cells (BLECs), to investigate the effect of KBs on the BBB and on Aß transport. Our results show that KBs do not modify BBB integrity and do not cause toxicity to BLECs. Furthermore, the presence of KBs in the culture media was combined with higher MCT1 and GLUT1 protein levels in BLECs. In addition, KBs significantly enhanced the protein levels of LRP1, P-gp, and PICALM, described to be involved in Aß clearance. Finally, the combined use of KBs promotes Aß efflux across the BBB. Inhibition experiments demonstrated the involvement of LRP1 and P-gp in the efflux. This work provides evidence that KBs promote Aß clearance from the brain to blood in addition to exciting perspectives for studying the use of KBs in therapeutic approaches.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Células Endoteliales/metabolismo , Cuerpos Cetónicos/farmacología , Transporte Biológico , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/efectos de los fármacos , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Humanos , Técnicas In Vitro , Transcitosis
6.
Int J Mol Sci ; 20(24)2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31842376

RESUMEN

The functional role of cytosine methylation in the CpG moieties of DNA, is well established in several biological functions. The interplay between CpG methylation and hypomethylation is a well-known mechanism of modulation of gene expression. However, the role of non-CpG methylation and active dynamics of demethylation is not clearly recognized. Although some evidence exists of a role of active non-CpG demethylation in the fast dynamics of transcriptional activation in animals, few studies deal with this topic. At present, active demethylation of non-CpG moieties is a neglected research area, in spite of the promise of significant novelties.


Asunto(s)
Islas de CpG , Metilación de ADN , Epigénesis Genética , Animales , Desmetilación , Regulación de la Expresión Génica
7.
J Cell Physiol ; 233(4): 3093-3104, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28802016

RESUMEN

We previously demonstrated that the nuclear form of Glutathione peroxidase 4 (nGPx4) has a peculiar distribution in sperm head, being localized to nuclear matrix and acrosome and that sperm lacking nGPx4 are more prone to decondensation in vitro. In this study we have hypothesized that sperm retained acetylated histones and nGPx4 are implicated in paternal chromatin decondensation and male pronucleus formation at fertilization. Indeed, significant higher amounts of acetylated histone H4 and acetylated histone H3 were observed by both immunofluorescence and western blotting in nGPx4-KO sperm vs WT ones. In vitro fertilization of zona pellucida-deprived oocytes by WT sperm in the presence of trichostatin (TSA) also demonstrated that paternal histone acetylation was inversely related to the timing of sperm nucleus decondensation at fertilization. In contrast, TSA had no effect on nGPx4-KO sperm, indicating they had a maximal level of histone acetylation. Moreover the paternally imprinted gene Igf2/H19 was hypomethylated in KO sperm compared to WT ones. The lack of nGPx4 negatively affected male fertility, causing a marked decrease in total pups and pregnancies with delivery, a significant reduction in pronuclei (PN) embryos in in vitro fertilization assays and an approximately 2 h delay in egg fertilization in vivo. Because the zona pellucida binding and fusion to oolemma of nGPx4-KO and WT sperm were similar, the subfertility of nGPx4 sperm reflected a decreased sperm progression through egg cumulus/zona pellucida, pinpointing a defective acrosome in line with acrosomal nGPx4 localization. We conclude that paternal acetylated histones and acrosomal nGPx4 are directly involved in fertilization.


Asunto(s)
Núcleo Celular/metabolismo , Fertilización , Glutatión Peroxidasa/metabolismo , Histonas/metabolismo , Espermatozoides/metabolismo , Acetilación , Animales , Cromatina/metabolismo , Islas de CpG/genética , Metilación de ADN/genética , Epidídimo/metabolismo , Fertilidad , Fertilización In Vitro , Impresión Genómica , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Isoformas de Proteínas/metabolismo , Zona Pelúcida/metabolismo
8.
J Neuroinflammation ; 13: 2, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26728085

RESUMEN

BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental disease which affects 1 in 88 children. Its etiology remains basically unknown, but it is apparent that neuroinflammation is involved in disease development. Great attention has been focused on pro-inflammatory cytokines, and several studies have reported their dysfunction unbalance in serum as well as in the brain. The present work aimed at evaluating putative dysregulation of interleukin-18 (IL-18), a pro-inflammatory cytokine of the IL-1 family in the sera of patients with ASD of different grades, compared to healthy controls, as well as in postmortem brain samples obtained from patients with tuberous sclerosis as well as acute inflammatory diseases. Moreover, quantitative analysis of IL-18 was performed in the sera and brain obtained from Reeler mice, an experimental model of autism. METHODS: Serum IL-18 levels were measured by ELISA. IL-18 was localized by immunohistochemical analysis in brain sections obtained from tuberous sclerosis and encephalitis patients, as well as from gender- and age-matched controls, and in the brain sections of both Reeler and wild-type mice. IL-18 was also quantified by Western blots in homogenates of Reeler and wild-type mice brains. IL-18 binding protein (IL-18BP) was evaluated in Reeler and wild-type mice plasma as well as in their brains (sections and homogenates). RESULTS: IL-18 content decreased in the sera of patients with autism compared to healthy subjects and in Reeler sera compared to wild-type controls. IL-18 was detected within glial cells and neurons in the brain of subjects affected by tuberous sclerosis and encephalitis whereas in healthy subjects, only a weak IL-18 positivity was detected at the level of glial cells. Western blot identified higher amounts of IL-18 in Reeler brain homogenates compared to wild-type littermates. IL-18BP was expressed in higher amounts in Reeler brain compared to the brain of wild-type mice, whereas no significant difference was detected comparing IL-18BP plasma levels. CONCLUSIONS: IL-18 is dysregulated in ASD patients. Further studies seemed necessary to clarify the molecular details behind IL-18 increase in the brain and IL-18 decrease in the sera of patients. An increase in the size of the patient cohort seems necessary to ascertain whether decreased IL-18 content in the sera can become a predictive biomarker of ASD and whether its measure, in combination with other markers (e.g., increased levels of brain-derived neurotrophic factor (BDNF)), may be included in a diagnostic panel.


Asunto(s)
Trastorno del Espectro Autista/patología , Encéfalo/metabolismo , Interleucina-18/metabolismo , Adolescente , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Niño , Preescolar , Citocinas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Femenino , Regulación de la Expresión Génica/genética , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Ratones , Ratones Mutantes Neurológicos , Ratones Transgénicos , Encuestas y Cuestionarios , Adulto Joven
9.
Food Chem X ; 22: 101501, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38846801

RESUMEN

This study aims to explore an advanced protocol for characterising dietary fibre (DF) fractions to meet the growing demand for accurate and reliable data. Although current enzymatic-gravimetric approaches, e.g., AOAC and Van Soest analysis, provide information about soluble and insoluble DF quantification, they present limitations related to the lack of fractions characterisation. To overcome these limitations, the proposed protocol integrates the official AOAC 991.43 method with the sequential fibre fractionation by exploiting the different resistance of the fibre fractions to acid hydrolysis treatments (TFA and H2SO4), utilising hazelnut shells as a case-study. Each hydrolysed fraction was quantified and characterised through GC-MS analysis of monosaccharides. The data obtained for hemicellulose, cellulose, and lignin fractions were then discussed and compared with the Van Soest method. This approach yields a comprehensive procedure applicable to different food and nutraceutical products, emphasising the importance of DF characterisation for a deeper understanding of their bio-functional properties.

10.
Clin Chem Lab Med ; 51(3): 523-34, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23183753

RESUMEN

DNA methylation reactions are regulated, in the first instance, by enzymes and the intermediates that constitute the 'so called' one-carbon metabolism. This is a complex biochemical pathway, also known as the homocysteine cycle, regulated by the presence of B vitamins (folate, B6, B12) and choline, among other metabolites. One of the intermediates of this metabolism is S-adenosylmethionine, which represent the methyl donor in all the DNA methyltransferase reactions in eukaryotes. The one-carbon metabolism therefore produces the substrate necessary for the transferring of a methyl group on the cytosine residues of DNA; S-adenosylmethionine also regulates the activity of the enzymes that catalyze this reaction, namely the DNA methyltransferases (DNMTs). Alterations of this metabolic cycle can therefore be responsible for aberrant DNA methylation processes possibly leading to several human diseases. As a matter of fact, increasing evidences indicate that a number of human diseases with multifactorial origin may have an epigenetic basis. This is also due to the great technical advances in the field of epigenetic research. Among the human diseases associated with epigenetic factors, aging-related and neurodegenerative diseases are probably the object of most intense research. This review will present the main evidences linking several human diseases to DNA methylation, with particular focus on neurodegenerative diseases, together with a short description of the state-of-the-art of methylation assays.


Asunto(s)
Metilación de ADN , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Epigenómica , Humanos , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Mutación , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , S-Adenosilmetionina/metabolismo , Frataxina
11.
Foods ; 12(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36613431

RESUMEN

Exopolysaccharides (EPS) are complex molecules produced by some microorganisms and used in foods as texturizers and stabilizers, their properties depending on their chemical structure. In this work, three different lactic acid bacteria (LAB), were tested for their ability to produce EPS, by using five different mono- and disaccharides as their sole carbon source. The growth and acidifying ability were analysed, the EPSs were quantified by the official method AOAC 991.43, and their chemical structure was investigated. The amount of EPS varied from 0.71 g/L to 2.38 g/L, and maltose was the best sugar for EPS production by Lacticaseibacillus paracasei 2333. Lacticaseibacillus rhamnosus 1019 produced the highest amount when fed with lactose, whereas the EPS amount of Lactobacillus bulgaricus 1932 was not significantly different depending on the sugar type. The EPS chains consisted of fructose, galactose, glucose, mannose, ribose, glucosamine, galactosamine, and in some cases rhamnose in different proportions, depending on the strain and carbon source. The molecular weight of EPS ranged from <10 KDa to >500 KDa and was again highly dependent on the strain and the sugar used, suggesting the possibility of growing different strains under different conditions to obtain EPS with different potential applications in the food system.

12.
Food Chem ; 421: 136150, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37086522

RESUMEN

Hydrothermal treatment is commonly used for hemicelluloses extraction from lignocellulosic materials. In this study, we thoroughly investigated with a novel approach the metabolomics of degradation compounds formed when hazelnut shells are subjected to this type of treatment. Three different complementary techniques were combined, namely GC-MS, 1H NMR, and UHPLC-IM-Q-TOF-MS. Organic acids, modified sugars and aromatic compounds, likely to be the most abundant chemical classes, were detected and quantified by NMR, whereas GC- and LC-MS-based techniques allowed to detect many molecules with low and higher Mw, respectively. Furans, polyols, N-heterocyclic compounds, aldehydes, ketones, and esters appeared, among others. Ion mobility-based LC-MS method was innovatively used for this purpose and could allow soon to create potentially useful datasets for building specific databases relating to the formation of these compounds in different process conditions and employing different matrices. This could be a very intelligent approach especially in a risk assessment perspective.


Asunto(s)
Metabolómica , Biomasa , Espectrometría de Masas/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Metabolómica/métodos
13.
Genes (Basel) ; 14(1)2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36672931

RESUMEN

A working hypothesis issues from patterns of methylation in the 5'-UTR of the DAT1 gene. We considered relationships between pairs of CpGs, of which one on the main-gene strand and another on the complementary opposite strand (COS). We elaborated on data from ADHD children: we calculated all possible combinations of probabilities (estimated by multiplying two raw values of methylation) in pairs of CpGs from either strand. We analyzed all correlations between any given pair and all other pairs. For pairs correlating with M6-M6COS, some pairs had cytosines positioning to the reciprocal right (e.g., M3-M2COS and M6-M5COS), other pairs had cytosines positioning to the reciprocal left (e.g., M2-M3COS; M5-M6COS). Significant pair-to-pair correlations emerged between main-strand and COS CpG pairs. Through graphic representations, we hypothesized that DNA folded to looping conformations: the C1GG C2GG C3GG and C5G C6G motifs would become close enough to allow cytosines 1-2-3 to interact with cytosines 5-6 (on both strands). Data further suggest a sliding, with left- and right-ward oscillations of DNA strands. While thorough empirical verification is needed, we hypothesize simultaneous methylation of main-strand and COS DNA ("methylation dynamics") to serve as a promising biomarker.


Asunto(s)
Metilación de ADN , ADN , Niño , Humanos , ADN/metabolismo
14.
Food Chem X ; 19: 100819, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37780249

RESUMEN

This research evaluated the application of a one-pot enzymatic extraction by using a protease for the concomitant and sustainable extraction of oils and proteins from fruit seeds/kernels of different species of stone, citrus and exotic fruits. The proteolysis improved the oil solvent-extractability of seeds/kernels of some fruit species compared to the use of acid and/or organic solvents and led to directly recover fat (10-33%) from mango, lemon and pumpkin seeds. Good protein extraction yields were obtained compared to conventional solvent extractions and with a good hydrolysis degree (almost 10%) in the case of lemon and pumpkin seed protein hydrolysates. The nutritional quality of all the protein hydrolysates was quite low, because of their limiting amino acids (histidine, methionine and lysine). On the contrary, the fruit seed/kernel oils resulted with high nutritional value, as they were mostly rich in unsaturated fatty acids, primarily oleic acid (>25%) and linoleic acid (till 40%).

15.
Cells ; 13(1)2023 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-38201262

RESUMEN

Besides its role in coagulation, vitamin K seems to be involved in various other mechanisms, including inflammation and age-related diseases, also at the level of gene expression. This work examined the roles of two vitamin K2 (menaquinones) vitamers, namely, menaquinone-4 (MK4) and reduced menaquinone-7 (MK7R), as gene modulator compounds, as well as their potential role in the epigenetic regulation of genes involved in amyloidogenesis and neuroinflammation. The SK-N-BE human neuroblastoma cells provided a "first-line" model for screening the neuroinflammatory and neurodegenerative molecular pathways. MK7R, being a new vitamin K form, was first tested in terms of solubilization, uptake and cell viability, together with MK4 as an endogenous control. We assessed the expression of key factors in amyloidogenesis and neuroinflammation, observing that the MK7R treatment was associated with the downregulation of neurodegeneration- (PSEN1 and BACE1) and neuroinflammation- (IL-1ß and IL-6) associated genes, whereas genes retaining protective roles toward amiloidogenesis were upregulated (ADAM10 and ADAM17). By profiling the DNA methylation patterns of genes known to be epigenetically regulated, we observed a correlation between hypermethylation and the downregulation of PSEN1, IL-1ß and IL-6. These results suggest a possible role of MK7R in the treatment of cognitive impairment, giving a possible base for further preclinical experiments in animal models of neurodegenerative disease.


Asunto(s)
Neuroblastoma , Enfermedades Neurodegenerativas , Animales , Humanos , Vitamina K 2/farmacología , Enfermedades Neuroinflamatorias , Secretasas de la Proteína Precursora del Amiloide , Metilación de ADN/genética , Epigénesis Genética , Interleucina-6 , Ácido Aspártico Endopeptidasas , Vitamina K , Neuroblastoma/genética , Línea Celular
16.
Curr Med Chem ; 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37828672

RESUMEN

Alcohol use disorders are responsible for 5.9% of all death annually and 5.1% of the global disease burden. It has been suggested that alcohol abuse can modify gene expression through epigenetic processes, namely DNA and histone methylation, histone acetylation, and microRNA expression. The alcohol influence on epigenetic mechanisms leads to molecular adaptation of a wide number of brain circuits, including the hypothalamus-hypophysis-adrenal axis, the prefrontal cortex, the mesolimbic-dopamine pathways and the endogenous opioid pathways. Epigenetic regulation represents an important level of alcohol-induced molecular adaptation in the brain. It has been demonstrated that acute and chronic alcohol exposure can induce opposite modifications in epigenetic mechanisms: acute alcohol exposure increases histone acetylation, decreases histone methylation and inhibits DNA methyltransferase activity, while chronic alcohol exposure induces hypermethylation of DNA. Some studies investigated the chromatin status during the withdrawal period and the craving period and showed that craving was associated with low methylation status, while the withdrawal period was associated with elevated activity of histone deacetylase and decreased histone acetylation. Given the effects exerted by ethanol consumption on epigenetic mechanisms, chromatin structure modifiers, such as histone deacetylase inhibitors and DNA methyltransferase inhibitors, might represent a new potential strategy to treat alcohol use disorder. Further investigations on molecular modifications induced by ethanol might be helpful to develop new therapies for alcoholism and drug addiction targeting epigenetic processes.

17.
Genes (Basel) ; 14(9)2023 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-37761921

RESUMEN

In the precision medicine era of cystic fibrosis (CF), therapeutic interventions, by the so-called modulators, target the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The levels of targetable CFTR proteins are a main variable in the success of patient-specific therapy. In turn, the CFTR protein level depends, at least in part, on the level of CFTR mRNA. Many mechanisms can modulate the CFTR mRNA level, for example, transcriptional rate, stability of the mRNA, epigenetics, and pathogenic variants that can affect mRNA production and degradation. Independently from the causes of variable CFTR mRNA levels, their exact quantitative assessment is of great importance in CF. Methods with high analytical sensitivity, precision, and accuracy are mandatory for the quantitative evaluation aimed at the amelioration of the diagnostic, prognostic, and therapeutic aspects. This paper compares, for the first time, two CFTR gene expression quantification methods: a well-established method for the relative quantification of CFTR mRNA using a real-time PCR and an innovative method for its absolute quantification using a droplet digital PCR. No comprehensive methods for absolute CFTR quantification via droplet digital PCR have been published so far. The accurate quantification of CFTR expression at the mRNA level is a critical step for the personalized therapeutic approaches of CF.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Genes Reguladores , Fibrosis Quística/diagnóstico , Fibrosis Quística/genética , Expresión Génica
18.
Reproduction ; 143(3): 325-32, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22143971

RESUMEN

In mice and other mammals, spermatogenesis is maintained by spermatogonial stem cells (SSCs), a cell population belonging to undifferentiated type A spermatogonia. In the accepted model of SSC self-renewal, Asingle (As) spermatogonia are the stem cells, whereas paired (Apaired (Apr)) and chained (Aaligned (Aal)) undifferentiated spermatogonia are committed to differentiation. This model has been recently challenged by evidence that As and chained (Apr and Aal), undifferentiated spermatogonia are heterogeneous in terms of gene expression and function. The expression profile of several markers, such as GFRA1 (the GDNF co-receptor), is heterogeneous among As, Apr and Aal spermatogonia. In this study, we have analysed and quantified the distribution of GFRA1-expressing cells within the different stages of the seminiferous epithelial cycle. We show that in all stages, GFRA1+ chained spermatogonia (Apr to Aal) are more numerous than GFRA1+ As spermatogonia. Numbers of chained GFRA1+ spermatogonia are sharply reduced in stages VII-VIII when Aal differentiate into A1 spermatogonia. GFRA1 expression is regulated by GDNF and in cultures of isolated seminiferous tubules, we found that GDNF expression and secretion by Sertoli cells is stage-dependent, being maximal in stages II-VI and decreasing thereafter. Using qRT-PCR analysis, we found that GDNF regulates the expression of genes such as Tex14, Sohlh1 and Kit (c-Kit) known to be involved in spermatogonial differentiation. Expression of Kit was upregulated by GDNF in a stage-specific manner. Our data indicate that GDNF, besides its crucial role in the self-renewal of stem cells also functions in the differentiation of chained undifferentiated spermatogonia.


Asunto(s)
Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Espermatogonias/metabolismo , Testículo/metabolismo , Factores de Edad , Animales , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína de la Leucemia Promielocítica con Dedos de Zinc , Epitelio Seminífero/efectos de los fármacos , Epitelio Seminífero/metabolismo , Espermatogonias/efectos de los fármacos , Testículo/citología , Testículo/efectos de los fármacos , Distribución Tisular
19.
Cerebellum ; 11(1): 28-40, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20878296

RESUMEN

We previously demonstrated that TSC22D4, a protein encoded by the TGF-ß1-activated gene Tsc22d4 (Thg-1pit) and highly expressed in postnatal and adult mouse cerebellum with multiple post-translationally modified protein forms, moves to nucleus when in vitro differentiated cerebellum granule neurons (CGNs) are committed to apoptosis by hyperpolarizing KCl concentrations in the culture medium. We have now studied TSC22D4 cytoplasmic/nuclear localization in CGNs and Purkinje cells: (1) during CGN differentiation/maturation in vivo, (2) during CGN differentiation in vitro, and (3) by in vitro culturing ex vivo cerebellum slices under conditions favoring/inhibiting CGN/Purkinje cell differentiation. We show that TSC22D4 displays both nuclear and cytoplasmic localizations in undifferentiated, early postnatal cerebellum CGNs, irrespectively of CGN proliferation/migration from external to internal granule cell layer, and that it specifically accumulates in the somatodendritic and synaptic compartments when CGNs mature, as indicated by TSC22D4 abundance at the level of adult cerebellum glomeruli and apparent lack in CGN nuclei. These features were also observed in cerebellum slices cultured in vitro under conditions favoring/inhibiting CGN/Purkinje cell differentiation. In vitro TSC22D4 silencing with siRNAs blocked CGN differentiation and inhibited neurite elongation in N1E-115 neuroblastoma cells, pinpointing the relevance of this protein to CGN differentiation.


Asunto(s)
Corteza Cerebelosa/crecimiento & desarrollo , Corteza Cerebelosa/metabolismo , Gránulos Citoplasmáticos/metabolismo , Neuronas/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular/genética , Línea Celular Tumoral , Corteza Cerebelosa/citología , Silenciador del Gen , Masculino , Ratones , Ratones Endogámicos , Neuritas/metabolismo , Neurogénesis/genética , Neuronas/citología , Técnicas de Cultivo de Órganos , Cultivo Primario de Células , ARN Interferente Pequeño/farmacología , Fracciones Subcelulares/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética
20.
Food Res Int ; 162(Pt A): 112019, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36461305

RESUMEN

Xylo-oligosaccharides (XOS) are emerging prebiotics that have recently been gained a great interest in the market of functional foods. Since their beneficial activity strictly depends on their chemical structure and on their degree of polymerization (DP), in this work an enzymatic method was developed to produce XOS with variable and modellable DPs, involving a combination of a commercial endo-ß-1,4-xylanase M3 from Trichoderma longibrachiatum and a deacetylase, using a commercial acetylated standard xylan as substrate. A Design of Experiment (DoE) was developed and through the variation of some hydrolysis conditions, some experiments allowed to obtain significant amounts of XOS with DP 7-10, up to 11%, despite XOS with DP 2-4 were always the most abundant (60-96% of total XOS). The most impacting parameter on the XOS distribution was the order of addition of the xylanase and deacetylating enzyme, while pH showed to have a great influence on the total yield. The method was also tested on an acetylated xylan extracted from grape stalks, structurally similar to the commercial standard xylan. The model was found to work in a very similar way also on the non-purified xylan sample, allowing the manipulation of enzymatic hydrolysis on a low-cost by-product, with the potential to obtain on a large scale XOS with high added value and with a specific DP, depending on the final application.


Asunto(s)
Oligosacáridos , Xilanos , Hidrólisis , Polimerizacion , Prebióticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA