Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-29378709

RESUMEN

Mycobacterium avium subsp. hominissuis mainly causes disseminated infection in immunocompromised hosts, such as individuals with human immunodeficiency virus (HIV) infection, and pulmonary infection in immunocompetent hosts. However, many aspects of the different types of M. avium subsp. hominissuis infection remain unclear. We examined the antibiotic susceptibilities and genotypes of M. avium subsp. hominissuis isolates from different hosts by performing drug susceptibility testing using eight antibiotics (clarithromycin, rifampin, ethambutol, streptomycin, kanamycin, amikacin, ethionamide, and levofloxacin) and variable-number tandem-repeat (VNTR) typing analysis for 46 isolates from the sputa of HIV-negative patients with pulmonary M. avium subsp. hominissuis disease without previous antibiotic treatment and 30 isolates from the blood of HIV-positive patients with disseminated M. avium subsp. hominissuis disease. Interestingly, isolates from pulmonary M. avium subsp. hominissuis disease patients were more resistant to seven of the eight drugs, with the exception being rifampin, than isolates from HIV-positive patients. Moreover, VNTR typing analysis showed that the strains examined in this study were roughly classified into three clusters, and the genetic distance from reference strain 104 for isolates from pulmonary M. avium subsp. hominissuis disease patients was statistically significantly different from that for isolates from HIV-positive patients (P = 0.0018), suggesting that M. avium subsp. hominissuis strains that cause pulmonary and disseminated disease have genetically distinct features. Significant differences in susceptibility to seven of the eight drugs, with the exception being ethambutol, were noted among the three clusters. Collectively, these results suggest that an association between the type of M. avium subsp. hominissuis infection, drug susceptibility, and the VNTR genotype and the properties of M. avium subsp. hominissuis strains associated with the development of pulmonary disease are involved in higher levels of antibiotic resistance.


Asunto(s)
Antibacterianos/uso terapéutico , Genotipo , Enfermedades Pulmonares/tratamiento farmacológico , Enfermedades Pulmonares/microbiología , Mycobacterium avium/efectos de los fármacos , Mycobacterium avium/genética , Humanos , Pruebas de Sensibilidad Microbiana , Mycobacterium avium/patogenicidad , Secuencias Repetidas en Tándem/genética
2.
Ultrason Sonochem ; 18(1): 276-81, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20638318

RESUMEN

Ultrasonic degradation of methyl cellulose, pullulan, dextran and poly(ethylene oxide) in aqueous solutions was investigated at the frequencies of 20 and 500 kHz, where the ultrasonic power delivered into solutions was kept constant (22 W). The number average molecular mass and the polydispersity were obtained as a function of sonication time. The degradation under sonication at the 500 kHz frequency proceeded faster in comparison with the 20 kHz sonication for four polymers. The addition of a radical scavenger, t-BuOH, resulted in suppression of degradation of water-soluble polymers. The degradation rate constants were estimated from the plot of molecular weight against sonication time. The degradation rate of methyl cellulose was the largest one among the investigated polymers. The difference in the degradation rates was discussed in terms of the flexibility and the hydrodynamic radius of polymer chains in aqueous solutions.


Asunto(s)
Depuradores de Radicales Libres/química , Polímeros/química , Ultrasonido , Agua/química , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA