Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 291(9): 4295-307, 2016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26592930

RESUMEN

The Na(+)-coupled betaine symporter BetP senses changes in the membrane state and increasing levels of cytoplasmic K(+) during hyperosmotic stress latter via its C-terminal domain and regulates transport activity according to both stimuli. This intriguing sensing and regulation behavior of BetP was intensively studied in the past. It was shown by several biochemical studies that activation and regulation depends crucially on the lipid composition of the surrounding membrane. In fact, BetP is active and regulated only when negatively charged lipids are present. Recent structural studies have revealed binding of phosphatidylglycerol lipids to functional important parts of BetP, suggesting a functional role of lipid interactions. However, a regulatory role of lipid interactions could only be speculated from the snapshot provided by the crystal structure. Here, we investigate the nature of lipid-protein interactions of BetP reconstituted in closely packed two-dimensional crystals of negatively charged lipids and probed at the molecular level with Fourier transform infrared (FTIR) spectroscopy. The FTIR data indicate that K(+) binding weakens the interaction of BetP especially with the anionic lipid head groups. We suggest a regulation mechanism in which lipid-protein interactions, especially with the C-terminal domain and the functional important gating helices transmembrane helice 3 (TMH3) and TMH12, confine BetP to its down-regulated transport state. As BetP is also activated by changes in the physical state of the membrane, our results point toward a more general mechanism of how active transport can be modified by dynamic lipid-protein interactions.


Asunto(s)
Proteínas Bacterianas/química , Corynebacterium glutamicum , Membrana Dobles de Lípidos/química , Modelos Moleculares , Simportadores/química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cardiolipinas/química , Cardiolipinas/metabolismo , Detergentes/química , Activación Enzimática , Glucósidos/química , Interacciones Hidrofóbicas e Hidrofílicas , Membrana Dobles de Lípidos/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fosfatidilgliceroles/química , Fosfatidilgliceroles/metabolismo , Fosfatidilinositoles/química , Fosfatidilinositoles/metabolismo , Potasio/química , Potasio/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Simportadores/antagonistas & inhibidores , Simportadores/genética , Simportadores/metabolismo , Temperatura
2.
EMBO J ; 32(23): 3096-105, 2013 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-24141878

RESUMEN

Bilayer lipids contribute to the stability of membrane transporters and are crucially involved in their proper functioning. However, the molecular knowledge of how surrounding lipids affect membrane transport is surprisingly limited and despite its general importance is rarely considered in the molecular description of a transport mechanism. One reason is that only few atomic resolution structures of channels or transporters reveal a functional interaction with lipids, which are difficult to detect in X-ray structures per se. Overcoming these difficulties, we report here on a new structure of the osmotic stress-regulated betaine transporter BetP in complex with anionic lipids. This lipid-associated BetP structure is important in the molecular understanding of osmoregulation due to the strong dependence of activity regulation in BetP on the presence of negatively charged lipids. We detected eight resolved palmitoyl-oleoyl phosphatidyl glycerol (PG) lipids mimicking parts of the membrane leaflets and interacting with key residues in transport and regulation. The lipid-protein interactions observed here in structural detail in BetP provide molecular insights into the role of lipids in osmoregulated secondary transport.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Betaína/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Corynebacterium glutamicum/enzimología , Lípidos/química , Transporte Biológico , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Presión Osmótica , Estructura Terciaria de Proteína , Simportadores
3.
J Mol Biol ; 414(3): 327-36, 2011 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-22024596

RESUMEN

The Na(+)-coupled betaine symporter BetP regulates transport activity in response to hyperosmotic stress only in its trimeric state, suggesting a regulatory crosstalk between individual protomers. BetP shares the overall fold of two inverted structurally related five-transmembrane (TM) helix repeats with the sequence-unrelated Na(+)-coupled symporters LeuT, vSGLT, and Mhp1, which are neither trimeric nor regulated in transport activity. Conformational changes characteristic for this transporter fold involve the two first helices of each repeat, which form a four-TM-helix bundle. Here, we identify two ionic networks in BetP located on both sides of the membrane that might be responsible for BetP's unique regulatory behavior by restricting the conformational flexibility of the four-TM-helix bundle. The cytoplasmic ionic interaction network links both first helices of each repeat in one protomer to the osmosensing C-terminal domain of the adjacent protomer. Moreover, the periplasmic ionic interaction network conformationally locks the four-TM-helix bundle between the same neighbor protomers. By a combination of site-directed mutagenesis, cross-linking, and betaine uptake measurements, we demonstrate how conformational changes in individual bundle helices are transduced to the entire bundle by specific inter-helical interactions. We suggest that one purpose of bundle networking is to assist crosstalk between protomers during transport regulation by specifically modulating the transition from outward-facing to inward-facing state.


Asunto(s)
Proteínas Bacterianas/química , Betaína/química , Proteínas Portadoras/química , Corynebacterium glutamicum/metabolismo , Proteínas Bacterianas/metabolismo , Transporte Biológico , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X/métodos , Dimerización , Relación Dosis-Respuesta a Droga , Electroforesis en Gel de Poliacrilamida/métodos , Escherichia coli/metabolismo , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Concentración Osmolar , Conformación Proteica , Estructura Secundaria de Proteína , Simportadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA