Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 239, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38407604

RESUMEN

Members of the bacterial phylum Planctomycetota have recently emerged as promising and for the most part untapped sources of novel bioactive compounds. The characterization of more than 100 novel species in the last decade stimulated recent bioprospection studies that start to unveil the chemical repertoire of the phylum. In this study, we performed systematic bioinformatic analyses based on the genomes of all 131 described members of the current phylum focusing on the identification of type III polyketide synthase (PKS) genes. Type III PKSs are versatile enzymes involved in the biosynthesis of a wide array of structurally diverse natural products with potent biological activities. We identified 96 putative type III PKS genes of which 58 are encoded in an operon with genes encoding a putative oxidoreductase and a methyltransferase. Sequence similarities on protein level and the genetic organization of the operon point towards a functional link to the structurally related hierridins recently discovered in picocyanobacteria. The heterologous expression of planctomycetal type III PKS genes from strains belonging to different families in an engineered Corynebacterium glutamicum strain led to the biosynthesis of pentadecyl- and heptadecylresorcinols. Phenotypic assays performed with the heterologous producer strains and a constructed type III PKS gene deletion mutant suggest that the natural function of the identified compounds differs from that confirmed in other bacterial alkylresorcinol producers. KEY POINTS: • Planctomycetal type III polyketide synthases synthesize long-chain alkylresorcinols. • Phylogenetic analyses suggest an ecological link to picocyanobacterial hierridins. • Engineered C. glutamicum is suitable for an expression of planctomycete-derived genes.


Asunto(s)
Aciltransferasas , Planctomicetos , Humanos , Filogenia , Operón
2.
Plant Biotechnol J ; 21(12): 2490-2506, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37578146

RESUMEN

Coumarins can fight pathogens and are thus promising for crop protection. Their biosynthesis, however, has not yet been engineered in crops. We tailored the constitutive accumulation of coumarins in transgenic Nicotiana benthamiana, Glycine max and Arabidopsis thaliana plants, as well as in Nicotiana tabacum BY-2 suspension cells. We did so by overexpressing A. thaliana feruloyl-CoA 6-hydroxylase 1 (AtF6'H1), encoding the key enzyme of scopoletin biosynthesis. Besides scopoletin and its glucoside scopolin, esculin at low level was the only other coumarin detected in transgenic cells. Mechanical damage of scopolin-accumulating tissue led to a swift release of scopoletin, presumably from the scopolin pool. High scopolin levels in A. thaliana roots coincided with reduced susceptibility to the root-parasitic nematode Heterodera schachtii. In addition, transgenic soybean plants were more tolerant to the soil-borne pathogenic fungus Fusarium virguliforme. Because mycotoxin-induced accumulation of reactive oxygen species and cell death were reduced in the AtF6'H1-overexpressors, the weaker sensitivity to F. virguliforme may be caused by attenuated oxidative damage of coumarin-hyperaccumulating cells. Together, engineered coumarin accumulation is promising for enhanced disease resilience of crops.


Asunto(s)
Arabidopsis , Micotoxinas , Arabidopsis/metabolismo , Escopoletina/metabolismo , Micotoxinas/metabolismo , Susceptibilidad a Enfermedades/metabolismo , Cumarinas/metabolismo , Estrés Oxidativo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
3.
Metab Eng ; 75: 205-216, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36581064

RESUMEN

In recent years branched short-chain dicarboxylates (BSCD) such as itaconic acid gained increasing interest in both medicine and biotechnology. Their use as building blocks for plastics urges for developing microbial upcycling strategies to provide sustainable end-of-life solutions. Furthermore, many BSCD exhibit anti-bacterial properties or exert immunomodulatory effects in macrophages, indicating a medical relevance for this group of molecules. For both of these applications, a detailed understanding of the microbial metabolism of these compounds is essential. In this study, the metabolic pathway of BSCD degradation from Pseudomonas aeruginosa PAO1 was studied in detail by heterologously transferring it to Pseudomonas putida. Heterologous expression of the PA0878-0886 itaconate metabolism gene cluster enabled P. putida KT2440 to metabolize itaconate, (S)- and (R)-methylsuccinate, (S)-citramalate, and mesaconate. The functions of the so far uncharacterized genes PA0879 and PA0881 were revealed and proven to extend the substrate range of the core degradation pathway. Furthermore, the uncharacterized gene PA0880 was discovered to encode a 2-hydroxyparaconate (2-HP) lactonase that catalyzes the cleavage of the itaconate derivative 2-HP to itatartarate. Interestingly, 2-HP was found to inhibit growth of the engineered P. putida on itaconate. All in all, this study extends the substrate range of P. putida to include BSCD for bio-upcycling of high-performance polymers, and also identifies 2-HP as promising candidate for anti-microbial applications.


Asunto(s)
Pseudomonas putida , Pseudomonas , Redes y Vías Metabólicas , Pseudomonas/genética , Pseudomonas aeruginosa/genética , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Ácidos Carboxílicos/metabolismo
4.
Appl Environ Microbiol ; 87(21): e0121121, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34469197

RESUMEN

Ruminants such as cattle and sheep depend on the breakdown of carbohydrates from plant-based feedstuff, which is accomplished by the microbial community in the rumen. Roughly 40% of the members of the rumen microbiota belong to the family Prevotellaceae, which ferments sugars to organic acids such as acetate, propionate, and succinate. These substrates are important nutrients for the ruminant. In a metaproteome analysis of the rumen of cattle, proteins that are homologous to the Na+-translocating NADH:quinone oxidoreductase (NQR) and the quinone:fumarate reductase (QFR) were identified in different Prevotella species. Here, we show that fumarate reduction to succinate in anaerobically growing Prevotella bryantii is coupled to chemiosmotic energy conservation by a supercomplex composed of NQR and QFR. This sodium-translocating NADH:fumarate oxidoreductase (SNFR) supercomplex was enriched by blue native PAGE (BN-PAGE) and characterized by in-gel enzyme activity staining and mass spectrometry. High NADH oxidation (850 nmol min-1 mg-1), quinone reduction (490 nmol min-1 mg-1), and fumarate reduction (1,200 nmol min-1 mg-1) activities, together with high expression levels, demonstrate that SNFR represents a charge-separating unit in P. bryantii. Absorption spectroscopy of SNFR exposed to different substrates revealed intramolecular electron transfer from the flavin adenine dinucleotide (FAD) cofactor in NQR to heme b cofactors in QFR. SNFR catalyzed the stoichiometric conversion of NADH and fumarate to NAD+ and succinate. We propose that the regeneration of NAD+ in P. bryantii is intimately linked to the buildup of an electrochemical gradient which powers ATP synthesis by electron transport phosphorylation. IMPORTANCE Feeding strategies for ruminants are designed to optimize nutrient efficiency for animals and to prevent energy losses like enhanced methane production. Key to this are the fermentative reactions of the rumen microbiota, dominated by Prevotella spp. We show that succinate formation by P. bryantii is coupled to NADH oxidation and sodium gradient formation by a newly described supercomplex consisting of Na+-translocating NADH:quinone oxidoreductase (NQR) and fumarate reductase (QFR), representing the sodium-translocating NADH:fumarate oxidoreductase (SNFR) supercomplex. SNFR is the major charge-separating module, generating an electrochemical sodium gradient in P. bryantii. Our findings offer clues to the observation that use of fumarate as feed additive does not significantly increase succinate production, or decrease methanogenesis, by the microbial community in the rumen.


Asunto(s)
Potenciales de la Membrana , Prevotella/enzimología , Sodio/metabolismo , Succinatos/metabolismo , Animales , Bovinos , Fumaratos/metabolismo , NAD , Ovinos , Succinato Deshidrogenasa
5.
Biotechnol Bioeng ; 118(11): 4414-4427, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34343343

RESUMEN

3,4-Dihydroxybenzoate (protocatechuate, PCA) is a phenolic compound naturally found in edible vegetables and medicinal herbs. PCA is of high interest in the chemical industry and has wide potential for pharmaceutical applications. We designed and constructed a novel Corynebacterium glutamicum strain to enable the efficient utilization of d-xylose for microbial production of PCA. Shake flask cultivation of the engineered strain showed a maximum PCA titer of 62.1 ± 12.1 mM (9.6 ± 1.9 g L-1 ) from d-xylose as the primary carbon and energy source. The corresponding yield was 0.33 C-mol PCA per C-mol d-xylose, which corresponds to 38% of the maximum theoretical yield. Under growth-decoupled bioreactor conditions, a comparable PCA titer and a total amount of 16.5 ± 1.1 g PCA could be achieved when d-glucose and d-xylose were combined as orthogonal carbon substrates for biocatalyst provision and product synthesis, respectively. Downstream processing of PCA was realized via electrochemically induced crystallization by taking advantage of the pH-dependent properties of PCA. This resulted in a maximum final purity of 95.4%. The established PCA production process represents a highly sustainable approach, which will serve as a blueprint for the bio-based production of other hydroxybenzoic acids from alternative sugar feedstocks.


Asunto(s)
Corynebacterium glutamicum , Glucosa/metabolismo , Hidroxibenzoatos/metabolismo , Ingeniería Metabólica , Xilosa/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo
6.
Appl Microbiol Biotechnol ; 104(21): 9267-9282, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32974745

RESUMEN

The acetic acid bacterium (AAB) Gluconobacter oxydans incompletely oxidizes a wide variety of carbohydrates and is therefore used industrially for oxidative biotransformations. For G. oxydans, no system was available that allows regulatable plasmid-based expression. We found that the L-arabinose-inducible PBAD promoter and the transcriptional regulator AraC from Escherichia coli MC4100 performed very well in G. oxydans. The respective pBBR1-based plasmids showed very low basal expression of the reporters ß-glucuronidase and mNeonGreen, up to 480-fold induction with 1% L-arabinose, and tunability from 0.1 to 1% L-arabinose. In G. oxydans 621H, L-arabinose was oxidized by the membrane-bound glucose dehydrogenase, which is absent in the multi-deletion strain BP.6. Nevertheless, AraC-PBAD performed similar in both strains in the exponential phase, indicating that a gene knockout is not required for application of AraC-PBAD in wild-type G. oxydans strains. However, the oxidation product arabinonic acid strongly contributed to the acidification of the growth medium in 621H cultures during the stationary phase, which resulted in drastically decreased reporter activities in 621H (pH 3.3) but not in BP.6 cultures (pH 4.4). These activities could be strongly increased quickly solely by incubating stationary cells in D-mannitol-free medium adjusted to pH 6, indicating that the reporters were hardly degraded yet rather became inactive. In a pH-controlled bioreactor, these reporter activities remained high in the stationary phase (pH 6). Finally, we created a multiple cloning vector with araC-PBAD based on pBBR1MCS-5. Together, we demonstrated superior functionality and good tunability of an AraC-PBAD system in G. oxydans that could possibly also be used in other AAB. KEY POINTS: • We found the AraC-PBAD system from E. coli MC4100 was well tunable in G. oxydans. • In the absence of AraC or l-arabinose, expression from PBAD was extremely low. • This araC-PBAD system could also be fully functional in other acetic acid bacteria.


Asunto(s)
Gluconobacter oxydans , Gluconobacter , Ácido Acético , Arabinosa , Escherichia coli/genética , Gluconobacter oxydans/genética , Plásmidos/genética
7.
Toxicol Appl Pharmacol ; 354: 64-80, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29278688

RESUMEN

Developmental neurotoxicity (DNT) may be induced when chemicals disturb a key neurodevelopmental process, and many tests focus on this type of toxicity. Alternatively, DNT may occur when chemicals are cytotoxic only during a specific neurodevelopmental stage. The toxicant sensitivity is affected by the expression of toxicant targets and by resilience factors. Although cellular metabolism plays an important role, little is known how it changes during human neurogenesis, and how potential alterations affect toxicant sensitivity of mature vs. immature neurons. We used immature (d0) and mature (d6) LUHMES cells (dopaminergic human neurons) to provide initial answers to these questions. Transcriptome profiling and characterization of energy metabolism suggested a switch from predominantly glycolytic energy generation to a more pronounced contribution of the tricarboxylic acid cycle (TCA) during neuronal maturation. Therefore, we used pulsed stable isotope-resolved metabolomics (pSIRM) to determine intracellular metabolite pool sizes (concentrations), and isotopically non-stationary 13C-metabolic flux analysis (INST 13C-MFA) to calculate metabolic fluxes. We found that d0 cells mainly use glutamine to fuel the TCA. Furthermore, they rely on extracellular pyruvate to allow continuous growth. This metabolic situation does not allow for mitochondrial or glycolytic spare capacity, i.e. the ability to adapt energy generation to altered needs. Accordingly, neuronal precursor cells displayed a higher sensitivity to several mitochondrial toxicants than mature neurons differentiated from them. In summary, this study shows that precursor cells lose their glutamine dependency during differentiation while they gain flexibility of energy generation and thereby increase their resistance to low concentrations of mitochondrial toxicants.


Asunto(s)
Neuronas Dopaminérgicas/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Síndromes de Neurotoxicidad/etiología , Células Cultivadas , Ciclo del Ácido Cítrico/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Relación Dosis-Respuesta a Droga , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Glucólisis/efectos de los fármacos , Humanos , Metabolómica/métodos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Síndromes de Neurotoxicidad/genética , Síndromes de Neurotoxicidad/metabolismo , Síndromes de Neurotoxicidad/patología , Medición de Riesgo , Pruebas de Toxicidad/métodos
8.
FEMS Yeast Res ; 18(8)2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30256930

RESUMEN

A robust cell factory that can tolerate combined inhibitory lignocellulosic compounds is essential for the cost-effective lignocellulose-based production of second-generation bioethanol and other bulk chemicals. Following high-throughput phenotyping of a yeast genomic overexpression library, we identified a Saccharomyces cerevisiae mutant (denoted AFb.01) with improved growth and fermentation performance under combined toxicity of acetic acid and furfural. AFb.01 carries overexpression of TRX1, which encodes for thioredoxin, a cellular redox machinery. Through comparative proteomics and metabolomics, the resulting cell-wide changes in the mutant were elucidated and these primarily target on the maintenance of energy and redox homeostasis and the minimization of stress-induced cell damages. In particular, the upregulation of the stress-response proteins Hsp26p and Fmp16p conferred tolerance of AFb.01 against protein denaturation and DNA damage. Moreover, increased levels of protectant metabolites such as trehalose, fatty acids, GABA and putrescine provided additional defense mechanisms for the mutant against oxidative and redox stresses. Future studies will concentrate on targeted genetic engineering to validate these mechanisms as well as to support the creation of more robust yeast strains, applicable for industrial, cost-competitive biorefinery production.


Asunto(s)
Antifúngicos/metabolismo , Farmacorresistencia Fúngica , Inhibidores de Crecimiento/metabolismo , Lignina/metabolismo , Mutación , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Ácido Acético/metabolismo , Biotransformación , Fermentación , Furaldehído/metabolismo , Genotipo , Oxidación-Reducción , Fenotipo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
9.
Appl Microbiol Biotechnol ; 101(6): 2371-2382, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27933454

RESUMEN

The linear C6 dicarboxylic acid adipic acid is an important bulk chemical in the petrochemical industry as precursor of the polymer nylon-6,6-polyamide. In recent years, efforts were made towards the biotechnological production of adipate from renewable carbon sources using microbial cells. One strategy is to produce adipate via a reversed ß-oxidation pathway. Hitherto, the adipate titers were very low due to limiting enzyme activities for this pathway. In most cases, the CoA intermediates are non-natural substrates for the tested enzymes and were therefore barely converted. We here tested heterologous enzymes in Escherichia coli to overcome these limitations and to improve the production of adipate via a reverse ß-oxidation pathway. We tested in vitro selected enzymes for the efficient reduction of the enoyl-CoA and in the final reaction for the thioester cleavage. The genes encoding the enzymes which showed in vitro the highest activity were then used to construct an expression plasmid for a synthetic adipate pathway. Expression of paaJ, paaH, paaF, dcaA, and tesB in E. coli BL21(DE3) resulted in the production of up to 36 mg/L of adipate after 30 h of cultivation. Beside the activities of the pathway enzymes, the availability of metabolic precursors may limit the synthesis of adipate, providing another key target for further strain engineering towards high-yield production of adipate with E. coli.


Asunto(s)
Acetil-CoA C-Aciltransferasa/metabolismo , Adipatos/metabolismo , Enoil-CoA Hidratasa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Oxidorreductasas/metabolismo , Acetil-CoA C-Aciltransferasa/genética , Enoil-CoA Hidratasa/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Ingeniería Metabólica , Redes y Vías Metabólicas/genética , Oxidación-Reducción , Oxidorreductasas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Metab Eng ; 38: 47-55, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27288926

RESUMEN

Corynebacterium glutamicum is an important organism in industrial biotechnology for the microbial production of bulk chemicals, in particular amino acids. However, until now activity of a complex catabolic network for the degradation of aromatic compounds averted application of C. glutamicum as production host for aromatic compounds of pharmaceutical or biotechnological interest. In the course of the construction of a suitable C. glutamicum platform strain for plant polyphenol production, four gene clusters comprising 21 genes involved in the catabolism of aromatic compounds were deleted. Expression of plant-derived and codon-optimized genes coding for a chalcone synthase (CHS) and a chalcone isomerase (CHI) in this strain background enabled formation of 35mg/L naringenin and 37mg/L eriodictyol from the supplemented phenylpropanoids p-coumaric acid and caffeic acid, respectively. Furthermore, expression of genes coding for a 4-coumarate: CoA-ligase (4CL) and a stilbene synthase (STS) led to the production of the stilbenes pinosylvin, resveratrol and piceatannol starting from supplemented phenylpropanoids cinnamic acid, p-coumaric acid and caffeic acid, respectively. Stilbene concentrations of up to 158mg/L could be achieved. Additional engineering of the amino acid metabolism for an optimal connection to the synthetic plant polyphenol pathways enabled resveratrol production directly from glucose. The construction of these C. glutamicum platform strains for the synthesis of plant polyphenols opens the door towards the microbial production of high-value aromatic compounds from cheap carbon sources with this microorganism.


Asunto(s)
Corynebacterium glutamicum/fisiología , Flavanonas/biosíntesis , Mejoramiento Genético/métodos , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas/genética , Estilbenos/metabolismo , Proteínas Bacterianas/genética , Vías Biosintéticas/genética , Flavanonas/aislamiento & purificación , Regulación Bacteriana de la Expresión Génica/genética , Especificidad de la Especie , Estilbenos/aislamiento & purificación
11.
Metab Eng ; 32: 184-194, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26453945

RESUMEN

Adaptive laboratory evolution has proven a valuable strategy for metabolic engineering. Here, we established an experimental evolution approach for improving microbial metabolite production by imposing an artificial selective pressure on the fluorescent output of a biosensor using fluorescence-activated cell sorting. Cells showing the highest fluorescent output were iteratively isolated and (re-)cultivated. The L-valine producer Corynebacterium glutamicum ΔaceE was equipped with an L-valine-responsive sensor based on the transcriptional regulator Lrp of C. glutamicum. Evolved strains featured a significantly higher growth rate, increased L-valine titers (~25%) and a 3-4-fold reduction of by-product formation. Genome sequencing resulted in the identification of a loss-of-function mutation (UreD-E188*) in the gene ureD (urease accessory protein), which was shown to increase L-valine production by up to 100%. Furthermore, decreased L-alanine formation was attributed to a mutation in the global regulator GlxR. These results emphasize biosensor-driven evolution as a straightforward approach to improve growth and productivity of microbial production strains.


Asunto(s)
Técnicas Biosensibles , Corynebacterium glutamicum/metabolismo , Valina/biosíntesis , Corynebacterium/genética , Corynebacterium/metabolismo , Corynebacterium glutamicum/genética , ADN Bacteriano/genética , ADN Recombinante , Evolución Molecular Dirigida , Colorantes Fluorescentes , Ingeniería Metabólica , Mutación
13.
Biotechnol Bioeng ; 111(2): 359-71, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23996851

RESUMEN

In a former study we showed that Corynebacterium glutamicum grows much faster in defined CGXII glucose medium when growth was initiated in highly diluted environments [Grünberger et al. (2013b) Biotechnol Bioeng]. Here we studied the batch growth of C. glutamicum in CGXII at a comparable low starting biomass concentration of OD ≈ 0.005 in more detail. During bioreactor cultivations a bi-phasic growth behavior with changing growth rates was observed. Initially the culture grew with µË†=0.61±0.02 h-1 before the growth rate dropped to µË†=0.46±0.02 h-1. We were able to confirm the elevated growth rate for C. glutamicum in CGXII and showed for the first time a growth rate beyond 0.6 in lab-scale bioreactor cultivations on defined medium. Advanced growth studies combining well-designed bioreactor and microfluidic single-cell cultivations (MSCC) with quantitative transcriptomics, metabolomics and integrative in silico analysis revealed protocatechuic acid as a hidden co-substrate for accelerated growth within CGXII. The presented approach proves the general applicability of MSCC to investigate and validate the effect of single medium components on microorganism growth during cultivation in liquid media, and therefore might be of interest for any kind of basic growth study.


Asunto(s)
Corynebacterium glutamicum/crecimiento & desarrollo , Medios de Cultivo/química , Reactores Biológicos/microbiología , Corynebacterium glutamicum/metabolismo , Perfilación de la Expresión Génica , Hidroxibenzoatos/metabolismo , Metaboloma
14.
Microb Biotechnol ; 17(1): e14362, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37991424

RESUMEN

Impranil® DLN-SD is a poly(ester-urethane) (PEU) that is widely used as coating material for textiles to fine-tune and improve their properties. Since coatings increase the complexity of such plastic materials, they can pose a hindrance for sustainable end-of-life solutions of plastics using enzymes or microorganisms. In this study, we isolated Halopseudomonas formosensis FZJ due to its ability to grow on Impranil DLN-SD and other PEUs as sole carbon sources. The isolated strain was exceptionally thermotolerant as it could degrade Impranil DLN-SD at up to 50°C. We identified several putative extracellular hydrolases of which the polyester hydrolase Hfor_PE-H showed substrate degradation of Impranil DLN-SD and thus was purified and characterized in detail. Hfor_PE-H showed moderate temperature stability (Tm = 53.9°C) and exhibited activity towards Impranil DLN-SD as well as polyethylene terephthalate. Moreover, we revealed the enzymatic release of monomers from Impranil DLN-SD by Hfor_PE-H using GC-ToF-MS and could decipher the associated metabolic pathways in H. formosensis FZJ. Overall, this study provides detailed insights into the microbial and enzymatic degradation of PEU coatings, thereby deepening our understanding of microbial coating degradation in both contained and natural environments. Moreover, the study highlights the relevance of the genus Halopseudomonas and especially the novel isolate and its enzymes for future bio-upcycling processes of coated plastic materials.


Asunto(s)
Ésteres , Uretano , Tereftalatos Polietilenos/metabolismo , Pseudomonas/metabolismo , Biodegradación Ambiental , Plásticos/química
15.
ChemSusChem ; 16(2): e202201981, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36448365

RESUMEN

Most combinations of chemo- and biocatalysis take place in aqueous media or require a solvent change with complex intermediate processing. Using enzymes in the same organic solvent as the chemocatalyst eliminates this need. Here, it was shown that a complete chemoenzymatic cascade to form dioxolanes could be carried out in a purely organic environment. The result, including downstream processing, was compared with a classical mode, shifting solvent. First, a two-step enzyme cascade starting from aliphatic aldehydes to chiral diols (3,4-hexanediol and 4,5-octanediol) was run either in an aqueous buffer or in the potentially biobased solvent cyclopentyl methyl ether. Subsequently, a ruthenium molecular catalyst enabled the conversion to dioxolanes [e. g., (4S,5S)-dipropyl-1,3-dioxolane]. Importantly, the total synthesis of this product was not only highly stereoselective but also based on the combination of biomass, CO2 , and hydrogen, thus providing an important example of a bio-hybrid chemical.


Asunto(s)
Dioxolanos , Solventes/química , Dioxolanos/química , Estereoisomerismo , Biocatálisis , Catálisis , Agua/química
16.
Bioresour Technol ; 388: 129741, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37717703

RESUMEN

Polyketides from (hydroxy)benzoates are an interesting group of plant polyphenolic compounds, whose biotechnological production is so far underrepresented due to their challenging heterologous biosynthesis. Efficient heterologous production of 2,4,6-tri- and 2,3',4,6-tetrahydroxybenzophenone, 3,5-dihydroxybiphenyl, and 4-hydroxycoumarin by whole-cell biocatalysis in combination with in situ product extraction with an organic solvent was demonstrated. Production was highly dependent on the used CoA ligase and polyketide synthase type III. Therefore, different combinations of polyketide synthases and benzoate-CoA ligases were evaluated for their biosynthesis performance in the solvent-tolerant Pseudomonas taiwanensis VLB120. A solvent screening yielded 2-undecanone as biocompatible, extraction-efficient solvent with good phase separation. In aqueous-organic two-phase cultivations, this solvent extraction circumvents product instability in the aqueous cultivation medium, and it increases yields by reducing inhibitory effects. Complete de novo synthesis from glucose of all (hydroxy)benzoate-derived polyketides was achieved in two-phase cultivations with metabolically engineered strains. Additionally, mutasynthesis was applied to obtain fluorinated benzophenone derivatives.


Asunto(s)
Policétidos , Benzoatos , Plantas , Pseudomonas , Solventes
17.
N Biotechnol ; 77: 30-39, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37336283

RESUMEN

In this work, we established an efficient process for the production of itaconate from the regionally sourced industrial side-stream molasses using Ustilago cynodontis and Ustilago maydis. While being relatively cheap and more environmentally friendly than refined sugars, there are some major challenges to overcome when working with molasses. Some of those challenges are a high nitrogen load, unknown impurities in the feedstock, and high amounts of ill-favoured carbon sources, such as sucrose or lactate. We could show that the activity of the sucrose-hydrolysing enzyme invertase plays a crucial role in the efficiency of the process and that the fructose utilisation differs between the two strains used in this work. Thus, with a higher invertase activity, the ability to convert fructose into the desired product itaconate, and an overall higher tolerance towards undesired substances in molasses, U. maydis is better equipped for the process on the alternative feedstock molasses than U. cynodontis. The established process with U. maydis reached competitive yields of up to 0.38 g g-1 and a titre of more than 37 g L-1. This shows that an efficient and cost-effective itaconate production process is generally feasible using U. maydis, which has the potential to greatly increase the sustainability of industrial itaconate production.


Asunto(s)
Ustilago , beta-Fructofuranosidasa , Melaza , Succinatos
18.
Bioengineering (Basel) ; 10(6)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37370654

RESUMEN

Bio-based bulk chemicals such as carboxylic acids continue to struggle to compete with their fossil counterparts on an economic basis. One possibility to improve the economic feasibility is the use of crude substrates in biorefineries. However, impurities in these substrates pose challenges in fermentation and purification, requiring interdisciplinary research. This work demonstrates a holistic approach to biorefinery process development, using itaconic acid production on thick juice based on sugar beets with Ustilago sp. as an example. A conceptual process design with data from artificially prepared solutions and literature data from fermentation on glucose guides the simultaneous development of the upstream and downstream processes up to a 100 L scale. Techno-economic analysis reveals substrate consumption as the main constituent of production costs and therefore, the product yield is the driver of process economics. Aligning pH-adjusting agents in the fermentation and the downstream process is a central lever for product recovery. Experiments show that fermentation can be transferred from glucose to thick juice by changing the feeding profile. In downstream processing, an additional decolorization step is necessary to remove impurities accompanying the crude substrate. Moreover, we observe an increased use of pH-adjusting agents compared to process simulations.

19.
Microb Cell Fact ; 11: 122, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22963408

RESUMEN

Overflow metabolism is well known for yeast, bacteria and mammalian cells. It typically occurs under glucose excess conditions and is characterized by excretions of by-products such as ethanol, acetate or lactate. This phenomenon, also denoted the short-term Crabtree effect, has been extensively studied over the past few decades, however, its basic regulatory mechanism and functional role in metabolism is still unknown. Here we present a comprehensive quantitative and time-dependent analysis of the exometabolome of Escherichia coli, Corynebacterium glutamicum, Bacillus licheniformis, and Saccharomyces cerevisiae during well-controlled bioreactor cultivations. Most surprisingly, in all cases a great diversity of central metabolic intermediates and amino acids is found in the culture medium with extracellular concentrations varying in the micromolar range. Different hypotheses for these observations are formulated and experimentally tested. As a result, the intermediates in the culture medium during batch growth must originate from passive or active transportation due to a new phenomenon termed "extended" overflow metabolism. Moreover, we provide broad evidence that this could be a common feature of all microorganism species when cultivated under conditions of carbon excess and non-inhibited carbon uptake. In turn, this finding has consequences for metabolite balancing and, particularly, for intracellular metabolite quantification and (13)C-metabolic flux analysis.


Asunto(s)
Bacillus/metabolismo , Corynebacterium glutamicum/metabolismo , Escherichia coli/metabolismo , Metaboloma , Saccharomyces cerevisiae/metabolismo , Medios de Cultivo , Cromatografía de Gases y Espectrometría de Masas
20.
Front Microbiol ; 13: 981767, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36060754

RESUMEN

For regulatable target gene expression in the acetic acid bacterium (AAB) Gluconobacter oxydans only recently the first plasmids became available. These systems solely enable AraC- and TetR-dependent induction. In this study we showed that the l-rhamnose-dependent regulator RhaS from Escherichia coli and its target promoters P rhaBAD , P rhaT , and P rhaSR could also be used in G. oxydans for regulatable target gene expression. Interestingly, in contrast to the responsiveness in E. coli, in G. oxydans RhaS increased the expression from P rhaBAD in the absence of l-rhamnose and repressed P rhaBAD in the presence of l-rhamnose. Inserting an additional RhaS binding site directly downstream from the -10 region generating promoter variant P rhaBAD(+RhaS-BS) almost doubled the apparent RhaS-dependent promoter strength. Plasmid-based P rhaBAD and P rhaBAD(+RhaS-BS) activity could be reduced up to 90% by RhaS and l-rhamnose, while a genomic copy of P rhaBAD(+RhaS-BS) appeared fully repressed. The RhaS-dependent repression was largely tunable by l-rhamnose concentrations between 0% and only 0.3% (w/v). The RhaS-P rhaBAD and the RhaS-P rhaBAD(+RhaS-BS) systems represent the first heterologous repressible expression systems for G. oxydans. In contrast to P rhaBAD , the E. coli promoter P rhaT was almost inactive in the absence of RhaS. In the presence of RhaS, the P rhaT activity in the absence of l-rhamnose was weak, but could be induced up to 10-fold by addition of l-rhamnose, resulting in a moderate expression level. Therefore, the RhaS-P rhaT system could be suitable for tunable low-level expression of difficult enzymes or membrane proteins in G. oxydans. The insertion of an additional RhaS binding site directly downstream from the E. coli P rhaT -10 region increased the non-induced expression strength and reversed the regulation by RhaS and l-rhamnose from inducible to repressible. The P rhaSR promoter appeared to be positively auto-regulated by RhaS and this activation was increased by l-rhamnose. In summary, the interplay of the l-rhamnose-binding RhaS transcriptional regulator from E. coli with its target promoters P rhaBAD , P rhaT , P rhaSR and variants thereof provide new opportunities for regulatable gene expression in G. oxydans and possibly also for simultaneous l-rhamnose-triggered repression and activation of target genes, which is a highly interesting possibility in metabolic engineering approaches requiring redirection of carbon fluxes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA