Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Gynecol Obstet Invest ; 89(2): 73-86, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38382486

RESUMEN

BACKGROUND: Uterine fibroids are benign monoclonal tumors originating from the smooth muscle cells of the myometrium, constituting the most prevalent pathology within the female genital tract. Uterine sarcomas, although rare, still represent a diagnostic challenge and should be managed in centers with adequate expertise in gynecological oncology. OBJECTIVES: This article is aimed to summarize and discuss cutting-edge elements about the diagnosis and management of uterine fibroids and sarcomas. METHODS: This paper is a report of the lectures presented in an expert meeting about uterine fibroids and sarcomas held in Palermo in February 2023. OUTCOME: Overall, the combination of novel molecular pathways may help combine biomarkers and expert ultrasound for the differential diagnosis of uterine fibroids and sarcomas. On the one hand, molecular and cellular maps of uterine fibroids and matched myometrium may enhance our understanding of tumor development compared to histologic analysis and whole tissue transcriptomics, and support the development of minimally invasive treatment strategies; on the other hand, ultrasound imaging allows in most of the cases a proper mapping the fibroids and to differentiate between benign and malignant lesions, which need appropriate management. CONCLUSIONS AND OUTLOOK: The choice of uterine fibroid management, including pharmacological approaches, surgical treatment, or other strategies, such as high-intensity focused ultrasound (HIFU), should be carefully considered, taking into account the characteristics of the patient and reproductive prognosis.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Leiomioma , Sarcoma , Miomectomía Uterina , Neoplasias Uterinas , Femenino , Humanos , Resultado del Tratamiento , Leiomioma/diagnóstico , Leiomioma/terapia , Leiomioma/patología , Neoplasias Uterinas/diagnóstico , Neoplasias Uterinas/terapia , Neoplasias Uterinas/patología , Pronóstico , Sarcoma/diagnóstico , Sarcoma/terapia , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos
2.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38673891

RESUMEN

Endometriosis is a chronic condition affecting reproductive-aged women, characterized by the growth of ectopic endometrial tissue. Despite being benign, endometriosis is associated with an increased risk of certain cancers, including endometriosis-associated ovarian cancer (EAOC). Ovarian cancer is rare, but more common in women with endometriosis, particularly endometrioid and clear-cell carcinomas. Factors such as hormonal imbalance, reproductive history, environmental exposures, and genetic predisposition contribute to the malignant transformation of endometriosis. Thus, understanding potential risk factors causing malignancy is crucial. Over the past few decades, various genetic mutations, microRNAs, as well as tumor microenvironmental factors have been identified, impacting pathways like PI3K/AKT/mTOR, DNA repair mechanisms, oxidative stress, and inflammation. Thus, this review aims to summarize molecular studies involved in EAOC pathogenesis as potential therapeutic targets. However, further research is needed to better understand the molecular and environmental factors driving EAOC development, to target the susceptibility of endometriotic lesions to malignant progression, and to identify effective therapeutic strategies.


Asunto(s)
Endometriosis , Neoplasias Ováricas , Humanos , Endometriosis/genética , Endometriosis/metabolismo , Endometriosis/patología , Endometriosis/etiología , Endometriosis/complicaciones , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/etiología , Neoplasias Ováricas/metabolismo , Microambiente Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Predisposición Genética a la Enfermedad , Transducción de Señal , Relevancia Clínica
3.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38612777

RESUMEN

High-grade gliomas (HGGs) and glioblastoma multiforme (GBM) are characterized by a heterogeneous and aggressive population of tissue-infiltrating cells that promote both destructive tissue remodeling and aberrant vascularization of the brain. The formation of defective and permeable blood vessels and microchannels and destructive tissue remodeling prevent efficient vascular delivery of pharmacological agents to tumor cells and are the significant reason why therapeutic chemotherapy and immunotherapy intervention are primarily ineffective. Vessel-forming endothelial cells and microchannel-forming glial cells that recapitulate vascular mimicry have both infiltration and destructive remodeling tissue capacities. The transmembrane protein TMEM230 (C20orf30) is a master regulator of infiltration, sprouting of endothelial cells, and microchannel formation of glial and phagocytic cells. A high level of TMEM230 expression was identified in patients with HGG, GBM, and U87-MG cells. In this study, we identified candidate genes and molecular pathways that support that aberrantly elevated levels of TMEM230 play an important role in regulating genes associated with the initial stages of cell infiltration and blood vessel and microchannel (also referred to as tumor microtubule) formation in the progression from low-grade to high-grade gliomas. As TMEM230 regulates infiltration, vascularization, and tissue destruction capacities of diverse cell types in the brain, TMEM230 is a promising cancer target for heterogeneous HGG tumors.


Asunto(s)
Glioblastoma , Glioma , Enfermedad de Parkinson , Humanos , Glioblastoma/genética , Proteínas de la Membrana/genética , Células Endoteliales , Angiogénesis , Glioma/genética , Neuroglía , Neovascularización Patológica/genética
5.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37108767

RESUMEN

The association between the immune system and tumor progression has attracted much interest in the research community in recent years [...].


Asunto(s)
Inmunidad Innata , Neoplasias , Humanos , Neoplasias/patología , Amigos , Sistema Inmunológico/patología
6.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36983067

RESUMEN

Neutrophils, the most abundant circulating leukocytes, play a well-known role in defense against pathogens through phagocytosis and degranulation. However, a new mechanism involving the release of neutrophil extracellular traps (NETs) composed of DNA, histones, calprotectin, myeloperoxidase, and elastase, among others, has been described. The so-called NETosis process can occur through three different mechanisms: suicidal, vital, and mitochondrial NETosis. Apart from their role in immune defense, neutrophils and NETs have been involved in physiopathological conditions, highlighting immunothrombosis and cancer. Notably, neutrophils can either promote or inhibit tumor growth in the tumor microenvironment depending on cytokine signaling and epigenetic modifications. Several neutrophils' pro-tumor strategies involving NETs have been documented, including pre-metastatic niche formation, increased survival, inhibition of the immune response, and resistance to oncologic therapies. In this review, we focus on ovarian cancer (OC), which remains the second most incidental but the most lethal gynecologic malignancy, partly due to the presence of metastasis, often omental, at diagnosis and the resistance to treatment. We deepen the state-of-the-art on the participation of NETs in OC metastasis establishment and progression and their involvement in resistance to chemo-, immuno-, and radiotherapies. Finally, we review the current literature on NETs in OC as diagnostic and/or prognostic markers, and their contribution to disease progression at early and advanced stages. The panoramic view provided in this article might pave the way for enhanced diagnostic and therapeutic strategies to improve the prognosis of cancer patients and, specifically, OC patients.


Asunto(s)
Trampas Extracelulares , Neoplasias Ováricas , Humanos , Femenino , Neutrófilos , Histonas , Atención , Microambiente Tumoral
7.
Am J Physiol Cell Physiol ; 323(5): C1345-C1354, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36094435

RESUMEN

Expression of the cell surface heparan sulfate proteoglycan syndecan-4 is dysregulated in breast cancer, the most frequent malignancy in women. High expression of syndecan-4 correlates with a worse survival in the subgroup of estrogen receptor negative and estrogen/progesterone-receptor negative patients. Aberrant expression of syndecan-4 in breast cancer involves both transcriptional and posttranscriptional mechanisms, including estrogen- and growth factor-dependent regulation, mutations in GAPVD1, NUP153, PDE4DIP, and RREB1, as well as targeting by microRNAs. At the functional level, syndecan-4 plays an important role in various stages of breast cancer progression by interacting with ligands as diverse as plasma proteins, extracellular matrix proteins, growth factors, and surface receptors, as well as members of the integrin family. Mechanisms including integrin recycling, ectodomain shedding, and crosstalk with other syndecans expand the repertoire of syndecan-4 function. Through these interactions, syndecan-4 regulates cellular processes such as adhesion, migration, and invasion. Additional possible functions of syndecan-4 in cells of the microenvironment contribute to the complexity of its pathophysiology. Notably, syndecan-4 expression is modulated by drugs used in breast cancer treatment, such as trastuzumab and zoledronate. Overall, these findings mark syndecan-4 as a novel pathogenesis factor and promising target for therapeutic interventions in breast cancer.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Humanos , Femenino , Sindecano-4/genética , Sindecano-4/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Neoplasias de la Mama/patología , Ácido Zoledrónico , Progesterona , Ligandos , Receptores de Estrógenos , Proteínas de la Matriz Extracelular , Péptidos y Proteínas de Señalización Intercelular , Trastuzumab , Integrinas , Estrógenos , Sindecano-1 , Microambiente Tumoral
8.
J Cell Biochem ; 123(3): 581-600, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35014077

RESUMEN

Breast cancer is the third most common type of cancer diagnosed. Cell cycle is a complex but highly organized and controlled process, in which normal cells sense mitogenic growth signals that instruct them to enter and progress through their cell cycle. This process culminates in cell division generating two daughter cells with identical amounts of genetic material. Uncontrolled proliferation is one of the hallmarks of cancer. In this study, we analyzed the expression of the cell cycle-related genes receptor for hyaluronan (HA)-mediated motility (RHAMM), AURKA, TPX2, PLK1, and PLK4 and correlated them with the prognosis in a collective of 3952 breast cancer patients. A high messenger RNA expression of all studied genes correlated with a poor prognosis. Stratifying the patients according to the expression of hormonal receptors, we found that in patients with estrogen and progesterone receptor-positive and human epithelial growth factor receptor 2-negative tumors, and Luminal A and Luminal B tumors, the expression of the five analyzed genes correlates with worse survival. qPCR analysis of a panel of breast cancer cell lines representative of major molecular subtypes indicated a predominant expression in the luminal subtype. In vitro experiments showed that radiation influences the expression of the five analyzed genes both in luminal and triple-negative model cell lines. Functional analysis of MDA-MB-231 cells showed that small interfering RNA knockdown of PLK4 and TPX2 and pharmacological inhibition of PLK1 had an impact on the cell cycle and colony formation. Looking for a potential upstream regulation by microRNAs, we observed a differential expression of RHAMM, AURKA, TPX2, PLK1, and PLK4 after transfecting the MDA-MB-231 cells with three different microRNAs. Survival analysis of miR-34c-5p, miR-375, and miR-142-3p showed a different impact on the prognosis of breast cancer patients. Our study suggests that RHAMM, AURKA, TPX2, PLK1, and PLK4 can be used as potential targets for treatment or as a prognostic value in breast cancer patients.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Neoplasias de la Mama/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/genética
9.
IUBMB Life ; 74(10): 955-968, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35587107

RESUMEN

Ductal carcinoma in situ (DCIS) is a form of breast cancer that is restricted to the lactiferous ducts and has not yet invaded the surrounding breast tissue. Dysregulation of the transmembrane heparan sulphate proteoglycan Syndecan-1 (Sdc-1) plays a role in tumour progression of invasive breast cancer (IBC). In DCIS, Sdc-1, c-Met and E-cadherin are part of a proangiogenic expression signature. In this study, we employed a siRNA knockdown approach in the DCIS model cell line MCF10A DCIS.com to investigate a potential connection between Sdc-1 and epithelial mesenchymal transition (EMT), proteolysis and the Rho kinase pathway. Analysis of gene expression data of the TNMplot.com database revealed that Sdc-1 expression was higher in primary breast tumours compared to metastases. The impact of Sdc-1-depletion on the cellular phenotype was investigated in a Matrigel-based three-dimensional cell culture model. Sdc-1 depletion resulted in the formation of larger spheroids and the formation of invasive protrusions. Application of matrix metalloproteinase (MMP) and Rho kinase inhibitors could block the Sdc-1-induced phenotype. qPCR analysis of Sdc-1-depleted cells in two-dimensional culture revealed upregulated expression of the EMT-markers CDH1, FN-1, CLDN1, the proteolysis markers MMP3, and MMP9, and HPSE, while MMP2, VIM and ROCK-2 were downregulated. Immunocytochemistry confirmed upregulation of MMP9 and fibronectin, the latter being particular prominent after ROCK inhibition. STRING analysis confirmed an interaction of the investigated gene products at the protein level. Our results suggest that diminished Sdc-1 expression plays a role in DCIS progression to IBC through deregulation of proteolytic factors and a partial EMT.


Asunto(s)
Carcinoma Ductal de Mama , Carcinoma Intraductal no Infiltrante , Sindecano-1 , Cadherinas/genética , Cadherinas/metabolismo , Carcinoma Ductal de Mama/patología , Carcinoma Intraductal no Infiltrante/genética , Carcinoma Intraductal no Infiltrante/metabolismo , Carcinoma Intraductal no Infiltrante/patología , Fibronectinas , Humanos , Metaloproteinasa 2 de la Matriz , Metaloproteinasa 3 de la Matriz , Metaloproteinasa 9 de la Matriz/metabolismo , ARN Interferente Pequeño , Sindecano-1/genética , Quinasas Asociadas a rho/genética
10.
Reprod Biomed Online ; 44(6): 976-990, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35361545

RESUMEN

RESEARCH QUESTION: Does resveratrol exert a potent inhibitory effect on the development of endometriosis by interfering with some pivotal processes? DESIGN: In-vitro cultures of primary endometriotic stromal cells, immortalized endometrial stromal (St-T1b) and endometriotic epithelial (12Z) cells were used to assess the effects of resveratrol on endometrial cell mechanisms. The effects of resveratrol on 12Z and St-T1b cell viability were assessed by MTT assay, apoptosis by FITC Annexin V assay and cleaved caspase-3 levels and cell migration by wound healing assay. The effect of resveratrol on the expression of genes related to cell migration, angiogenesis and cell stemness was evaluated by qRT-PCR. RESULTS: Resveratrol significantly decreased cell viability (P= 0.0065 to P = 0.0180), cell migration (P < 0.001 to P = 0.0225) and increased the number of apoptotic cells (P = 0.0031 to P = 0.0432) in both cell lines. In cell lines and primary culture, the treatment reduced MMP-2/TIMP-1 (P < 0.001 to P = 0.0180), VEGF (P = 0.0052 to P = 0.0243) and Ang-1 mRNA (P < 0.001 to P = 0.0382) expression. Among the stem cell phenotype markers, resveratrol 100 µM increased mRNA expression levels of Notch-1 (P < 0.001 to P = 0.0018), KLF-4 (P = 0.0011 to P = 0.0137), SOX-2 (P < 0.001 to P = 0.0070) and TERT (P < 0.001 to P = 0.0193) in both cell lines and primary cultures. The mRNA expression level of Snail-1 increased in the cell lines (P < 0.001 to P = 0.0087), whereas OCT-4 mRNA expression increased in St-T1b (P = 0.0396) and primary cultures (P = 0.0148). Vimentin mRNA expression showed a significant upregulation in primary cultures (P < 0.001). The expression of Msi-1 (P = 0.0145) and NANOG (P = 0.0080) decreased only in St-T1b cells. CONCLUSION: Resveratrol showed inhibitory effects on cell behaviour related to the development of endometriosis by differentially affecting growth, apoptosis, migration and stem cell phenotype of endometrial and endometriotic cells in vitro.


Asunto(s)
Endometriosis , Endometriosis/patología , Endometrio/metabolismo , Femenino , Humanos , ARN Mensajero/metabolismo , Resveratrol/farmacología , Células del Estroma/metabolismo
11.
Int J Mol Sci ; 23(10)2022 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35628603

RESUMEN

Syndecans are transmembrane heparan sulfate proteoglycans that integrate signaling at the cell surface. By interacting with cytokines, signaling receptors, proteases, and extracellular matrix proteins, syndecans regulate cell proliferation, metastasis, angiogenesis, and inflammation. We analyzed public gene expression datasets to evaluate the dysregulation and potential prognostic impact of Syndecan-3 in ovarian cancer. Moreover, we performed functional in vitro analysis in syndecan-3-siRNA-treated SKOV3 and CAOV3 ovarian cancer cells. In silico analysis of public gene array datasets revealed that syndecan-3 mRNA expression was significantly increased 5.8-fold in ovarian cancer tissues (n = 744) and 3.4-fold in metastases (n = 44) compared with control tissue (n = 46), as independently confirmed in an RNAseq dataset on ovarian serous cystadenocarcinoma tissue (n = 374, controls: n = 133, 3.5-fold increase tumor vs. normal). Syndecan-3 siRNA knockdown impaired 3D spheroid growth and colony formation as stemness-related readouts in SKOV3 and CAOV3 cells. In SKOV3, but not in CAOV3 cells, syndecan-3 depletion reduced cell viability both under basal conditions and under chemotherapy with cisplatin, or cisplatin and paclitaxel. While analysis of the SIOVDB database did not reveal differences in Syndecan-3 expression between patients, sensitive, resistant or refractory to chemotherapy, KM Plotter analysis of 1435 ovarian cancer patients revealed that high syndecan-3 expression was associated with reduced survival in patients treated with taxol and platin. At the molecular level, a reduction in Stat3 activation and changes in the expression of Wnt and notch signaling constituents were observed. Our study suggests that up-regulation of syndecan-3 promotes the pathogenesis of ovarian cancer by modulating stemness-associated pathways.


Asunto(s)
Neoplasias Ováricas , Sindecano-3 , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/metabolismo , Línea Celular Tumoral , Cisplatino/farmacología , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Sindecano-3/genética , Sindecano-3/metabolismo
12.
Int J Mol Sci ; 23(5)2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35269992

RESUMEN

The stem cell marker and RNA-binding protein Musashi-1 is overexpressed in endometriosis. Musashi-1-siRNA knockdown in Ishikawa cells altered the expression of stem cell related genes, such as OCT-4. To investigate the role of both human Musashi homologues (MSI-1 and MSI-2) in the pathogenesis of endometriosis, immortalized endometriotic 12-Z cells and primary endometriotic stroma cells were treated with Musashi-1- and Musashi-2-siRNA. Subsequently, the impact on cell proliferation, cell apoptosis, cell necrosis, spheroid formation, stem cell phenotype and the Notch signaling pathway was studied in vitro. Using the ENDOMET Turku Endometriosis database, the gene expression of stem cell markers and Notch signaling pathway constituents were analyzed according to localization of the endometriosis lesions. The database analysis demonstrated that expression of Musashi and Notch pathway-related genes are dysregulated in patients with endometriosis. Musashi-1/2-double-knockdown increased apoptosis and necrosis and reduced stem cell gene expression, cell proliferation, and the formation of spheroids. Musashi silencing increased the expression of the anti-proliferation mediator p21. Our findings suggest the therapeutic potential of targeting the Musashi-Notch axis. We conclude that the Musashi genes have an impact on Notch signaling and the pathogenesis of endometriosis through the downregulation of proliferation, stemness characteristics and the upregulation of apoptosis, necrosis and of the cell cycle regulator p21.


Asunto(s)
Endometriosis , Proliferación Celular/genética , Endometriosis/patología , Femenino , Humanos , Necrosis , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , ARN Interferente Pequeño/genética , Transducción de Señal/genética
13.
Semin Cancer Biol ; 62: 48-67, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31336150

RESUMEN

Over the past few decades, understanding how tumor cells evade the immune system and their communication with their tumor microenvironment, has been the subject of intense investigation, with the aim of developing new cancer immunotherapies. The current therapies against cancer such as monoclonal antibodies against checkpoint inhibitors, adoptive T-cell transfer, cytokines, vaccines, and oncolytic viruses have managed to improve the clinical outcome of the patients. However, in some tumor entities, the response is limited and could benefit from the identification of novel therapeutic targets. It is known that tumor-extracellular matrix interplay and matrix remodeling are necessary for anti-tumor and pro-tumoral immune responses. Proteoglycans are dominant components of the extracellular matrix and are a highly heterogeneous group of proteins characterized by the covalent attachment of a specific linear carbohydrate chain of the glycosaminoglycan type. At cell surfaces, these molecules modulate the expression and activity of cytokines, chemokines, growth factors, adhesion molecules, and function as signaling co-receptors. By these mechanisms, proteoglycans influence the behavior of cancer cells and their microenvironment during the progression of solid tumors and hematopoietic malignancies. In this review, we discuss why cell surface proteoglycans are attractive pharmacological targets in cancer, and we present current and recent developments in cancer immunology and immunotherapy utilizing proteoglycan-targeted strategies.


Asunto(s)
Membrana Celular/metabolismo , Neoplasias/metabolismo , Proteoglicanos/metabolismo , Animales , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Biomarcadores de Tumor , Metabolismo de los Hidratos de Carbono , Membrana Celular/inmunología , Ensayos Clínicos como Asunto , Evaluación Preclínica de Medicamentos , Matriz Extracelular , Glicosaminoglicanos , Humanos , Inmunomodulación/efectos de los fármacos , Inmunoterapia , Terapia Molecular Dirigida , Neoplasias/etiología , Neoplasias/inmunología , Neoplasias/terapia , Proteoglicanos/antagonistas & inhibidores , Proteoglicanos/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Microambiente Tumoral/inmunología
14.
J Cell Biochem ; 122(10): 1491-1505, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34180077

RESUMEN

Syndecan-4, a predicted target of the microRNA miR-140-3p, plays an important role in multiple steps of tumor progression and is the second most abundant heparan sulfate proteoglycan produced by breast carcinoma cell lines. To investigate the potential functional relationship of miR-140-3p and syndecan-4, MDA-MB-231, SKBR3, and MCF-7 breast cancer (BC) cells were transiently transfected with pre-miR-140-3p, syndecan-4 small interfering RNAJ, or control reagents, respectively. Altered cell behavior was monitored by adhesion, migration, and invasion chamber assays. Moreover, the prognostic value of syndecan-4 was assessed by Kaplan-Maier Plotter analysis of gene expression data from tumor samples of 4929 patients. High expression of syndecan-4 was associated with better relapse-free survival in the whole collective of BC patients, but correlated with a worse survival in the subgroup of estrogen receptor negative and estrogen/progesterone-receptor negative patients. miR-140-3p expression was associated with improved survival irrespective of hormone receptor status. miR-140-3p overexpression induced posttranscriptional downregulation of syndecan-4, as demonstrated by quantitative real-time PCR (qPCR), flow cytometry, and luciferase assays, resulting in decreased BC cell migration and matrigel invasiveness. Furthermore, miR-140-3p overexpression and syndecan-4 silencing increased the adhesion of BC to fibronectin and laminin. qPCR analysis demonstrated that syndecan-4 silencing leads to altered gene expression of adhesion-related molecules, such as fibronectin and focal adhesion kinase, as well as in the gene expression of the proinvasive factors matrix metalloproteinase 2 and heparanase (also known as HPSE). We conclude that syndecan-4 is a novel target of miR-140-3p that regulates BC cell invasiveness and cell-matrix interactions in the tumor microenvironment.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Matriz Extracelular/patología , MicroARNs/genética , Sindecano-4/metabolismo , Apoptosis , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Adhesión Celular , Movimiento Celular , Proliferación Celular , Matriz Extracelular/metabolismo , Femenino , Humanos , Invasividad Neoplásica , Pronóstico , Tasa de Supervivencia , Sindecano-4/genética , Células Tumorales Cultivadas
15.
J Cell Biochem ; 122(5): 577-597, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33417295

RESUMEN

Breast cancer continues to be a serious public health problem. The role of the hedgehog pathway in normal development of the mammary gland as well as in carcinogenesis and progression of breast cancer is the subject of intense investigation, revealing functional interactions with cell surface heparan sulfate. Nevertheless, its influence on breast cancer prognosis, and its relation to specific sulfation motifs in heparan sulfate have only been poorly studied in large patient cohorts. Using the public database KMplotter that includes gene expression and survival data of 3951 patients, we found that the higher expression of SHH, HHAT, PTCH1, GLI1, GLI2, and GLI3 positively influences breast cancer prognosis. Stratifying patients according to the expression of hormone receptors, histological grade, lymph node metastasis, and systemic therapy, we observed that GLI1, GLI2, and GLI3 expression, as well as co-expression of SHH and ELP1 were associated with worse relapse-free survival in patients with HER2-positive tumors. Moreover, GLI1 expression in progesterone receptor-negative tumors and GLI3 expression in grade 3 tumors correlated with poor prognosis. SHH, in a panel of cell lines representing different breast cancer subtypes, and HHAT, PTCH1, GLI1, GLI2, and GLI3 were mostly expressed in cell lines classified as HER2-positive and basal-like. Expression of SHH, HHAT, GLI2, and GLI3 was differentially affected by overexpression of the heparan sulfate sulfotransferases HS2ST1 and HS3ST2 in vitro. Although high HS2ST1 expression was associated with poor prognosis in KMplotter analysis, high levels of HS3ST2 were associated with a good prognosis, except for ER-positive breast cancer. We suggest the GLI transcription factors as possible markers for the diagnosis, treatment, and prognosis of breast cancer especially in HER2-positive tumors, but also in progesterone receptor-negative and grade-3 tumors. The pathway interaction and prognostic impact of specific heparan sulfate sulfotransferases provide novel perspectives regarding a therapeutical targeting of the hedgehog pathway in breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas Hedgehog/metabolismo , Femenino , Heparitina Sulfato , Humanos , Proteínas del Tejido Nervioso/metabolismo , Receptor Patched-1/metabolismo , Pronóstico , Factores de Elongación Transcripcional/metabolismo , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína Gli2 con Dedos de Zinc/metabolismo , Proteína Gli3 con Dedos de Zinc/metabolismo
16.
Int J Mol Sci ; 22(14)2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34298978

RESUMEN

microRNAs are small noncoding RNAs that regulate gene expression at the posttranscriptional level. Let-7d is a microRNA of the conserved let-7 family that is dysregulated in female malignancies including breast cancer, ovarian cancer, endometrial cancer, and cervical cancer. Moreover, a dysregulation is observed in endometriosis and pregnancy-associated diseases such as preeclampsia and fetal growth restriction. Let-7d expression is regulated by cytokines and steroids, involving transcriptional regulation by OCT4, MYC and p53, as well as posttranscriptional regulation via LIN28 and ADAR. By downregulating a wide range of relevant mRNA targets, let-7d affects cellular processes that drive disease progression such as cell proliferation, apoptosis (resistance), angiogenesis and immune cell function. In an oncological context, let-7d has a tumor-suppressive function, although some of its functions are context-dependent. Notably, its expression is associated with improved therapeutic responses to chemotherapy in breast and ovarian cancer. Studies in mouse models have furthermore revealed important roles in uterine development and function, with implications for obstetric diseases. Apart from a possible utility as a diagnostic blood-based biomarker, pharmacological modulation of let-7d emerges as a promising therapeutic concept in a variety of female disease conditions.


Asunto(s)
Regulación de la Expresión Génica , Enfermedades de los Genitales Femeninos/genética , MicroARNs/genética , Envejecimiento , Animales , Biomarcadores , Biomarcadores de Tumor , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Línea Celular Tumoral , Femenino , Fertilidad/genética , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Enfermedades de los Genitales Femeninos/tratamiento farmacológico , Neoplasias de los Genitales Femeninos/tratamiento farmacológico , Neoplasias de los Genitales Femeninos/genética , Humanos , Ratones , MicroARNs/fisiología , Terapia Molecular Dirigida , Embarazo , Complicaciones del Embarazo/genética , ARN Neoplásico/antagonistas & inhibidores , ARN Neoplásico/genética , ARN Neoplásico/fisiología
17.
Int J Mol Sci ; 22(21)2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34768932

RESUMEN

In ovarian cancer, therapy resistance mechanisms complicate cancer cell eradication. Targeting Musashi RNA-binding proteins (MSI) may increase therapeutic efficacy. Database analyses were performed to identify gene expression associations between MSI proteins and key therapy resistance and cancer stem cell (CSC) genes. Then, ovarian cancer cells were subjected to siRNA-based dual knockdown of MSI-1 and MSI-2. CSC and cell cycle gene expression was investigated using quantitative polymerase chain reaction (qPCR), western blots, and flow cytometry. Metabolic activity and chemoresistance were assessed by MTT assay. Clonogenic assays were used to quantify cell survival post-irradiation. Database analyses demonstrated positive associations between MSI proteins and putative CSC markers NOTCH, MYC, and ALDH4A1 and negative associations with NOTCH inhibitor NUMB. MSI-2 expression was negatively associated with the apoptosis regulator p21. MSI-1 and MSI-2 were positively correlated, informing subsequent dual knockdown experiments. After MSI silencing, CSC genes were downregulated, while cell cycle progression was reduced. Metabolic activity was decreased in some cancer cells. Both chemo- and radioresistance were reduced after dual knockdown, suggesting therapeutic potential. Dual knockdown of MSI proteins is a promising venue to impede tumor growth and sensitize ovarian cancer cells to irradiation and chemotherapy.


Asunto(s)
Resistencia a Antineoplásicos/genética , Proteínas del Tejido Nervioso/genética , Neoplasias Ováricas/terapia , Proteínas de Unión al ARN/genética , Tolerancia a Radiación/genética , 1-Pirrolina-5-Carboxilato Deshidrogenasa/genética , Apoptosis/genética , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/patología , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Regulación hacia Abajo/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Células Madre Neoplásicas/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Ovario/patología , Proteínas Proto-Oncogénicas c-myc/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Receptores Notch/genética
18.
Int J Mol Sci ; 22(11)2021 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-34070901

RESUMEN

Glycosaminoglycans (GAGs) and proteoglycans (PGs) are major components of the glycocalyx. The secreted GAG and CD44 ligand hyaluronic acid (HA), and the cell surface PG syndecan-1 (Sdc-1) modulate the expression and activity of cytokines, chemokines, growth factors, and adhesion molecules, acting as critical regulators of tumor cell behavior. Here, we studied the effect of Sdc-1 siRNA depletion and HA treatment on hallmark processes of cancer in breast cancer cell lines of different levels of aggressiveness. We analyzed HA synthesis, and parameters relevant to tumor progression, including the stem cell phenotype, Wnt signaling constituents, cell cycle progression and apoptosis, and angiogenic markers in luminal MCF-7 and triple-negative MDA-MB-231 cells. Sdc-1 knockdown enhanced HAS-2 synthesis and HA binding in MCF-7, but not in MDA-MB-231 cells. Sdc-1-depleted MDA-MB-231 cells showed a reduced CD24-/CD44+ population. Furthermore, Sdc-1 depletion was associated with survival signals in both cell lines, affecting cell cycle progression and apoptosis evasion. These changes were linked to the altered expression of KLF4, MSI2, and miR-10b and differential changes in Erk, Akt, and PTEN signaling. We conclude that Sdc-1 knockdown differentially affects HA metabolism in luminal and triple-negative breast cancer model cell lines and impacts the stem phenotype, cell survival, and angiogenic factors.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Glicocálix/metabolismo , Ácido Hialurónico/metabolismo , Sindecano-1/genética , Neoplasias de la Mama Triple Negativas/genética , Vía de Señalización Wnt/genética , Apoptosis/efectos de los fármacos , Apoptosis/genética , Antígeno CD24/genética , Antígeno CD24/metabolismo , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Bases de Datos Factuales , Femenino , Glicocálix/química , Glicocálix/efectos de los fármacos , Humanos , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Hialuronano Sintasas/genética , Hialuronano Sintasas/metabolismo , Ácido Hialurónico/farmacología , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Células MCF-7 , MicroARNs/genética , MicroARNs/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Análisis de Supervivencia , Sindecano-1/antagonistas & inhibidores , Sindecano-1/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/mortalidad , Neoplasias de la Mama Triple Negativas/patología
20.
Cancer Sci ; 111(8): 2907-2922, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32573871

RESUMEN

Heparan sulfate proteoglycans (HSPGs) act as signaling co-receptors by interaction of their sulfated glycosaminoglycan chains with numerous signaling molecules. In breast cancer, the function of heparan sulfate 2-O-sulfotransferase (HS2ST1), the enzyme mediating 2-O-sulfation of HS, is largely unknown. Hence, a comparative study on the functional consequences of HS2ST1 overexpression and siRNA knockdown was performed in the breast cancer cell lines MCF-7 and MDA-MB-231. HS2ST1 overexpression inhibited Matrigel invasion, while its knockdown reversed the phenotype. Likewise, cell motility and adhesion to fibronectin and laminin were affected by altered HS2ST1 expression. Phosphokinase array screening revealed a general decrease in signaling via multiple pathways. Fluorescent ligand binding studies revealed altered binding of fibroblast growth factor 2 (FGF-2) to HS2ST1-expressing cells compared with control cells. HS2ST1-overexpressing cells showed reduced MAPK signaling responses to FGF-2, and altered expression of epidermal growth factor receptor (EGFR), E-cadherin, Wnt-7a, and Tcf4. The increased viability of HS2ST1-depleted cells was reduced to control levels by pharmacological MAPK pathway inhibition. Moreover, MAPK inhibitors generated a phenocopy of the HS2ST1-dependent delay in scratch wound repair. In conclusion, HS2ST1 modulation of breast cancer cell invasiveness is a compound effect of altered E-cadherin and EGFR expression, leading to altered signaling via MAPK and additional pathways.


Asunto(s)
Neoplasias de la Mama/patología , Sulfotransferasas/metabolismo , Antígenos CD/metabolismo , Butadienos/farmacología , Cadherinas/metabolismo , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Receptores ErbB/metabolismo , Femenino , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Células MCF-7 , Invasividad Neoplásica/patología , Nitrilos/farmacología , ARN Interferente Pequeño/metabolismo , Sulfotransferasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA