Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Transl Med ; 22(1): 163, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365700

RESUMEN

BACKGROUND: Soluble oligomeric forms of Tau protein have emerged as crucial players in the propagation of Tau pathology in Alzheimer's disease (AD). Our objective is to introduce a single-domain antibody (sdAb) named 2C5 as a novel radiotracer for the efficient detection and longitudinal monitoring of oligomeric Tau species in the human brain. METHODS: The development and production of 2C5 involved llama immunization with the largest human Tau isoform oligomers of different maturation states. Subsequently, 2C5 underwent comprehensive in vitro characterization for affinity and specificity via Enzyme-Linked Immunosorbent Assay and immunohistochemistry on human brain slices. Technetium-99m was employed to radiolabel 2C5, followed by its administration to healthy mice for biodistribution analysis. RESULTS: 2C5 exhibited robust binding affinity towards Tau oligomers (Kd = 6.280 nM ± 0.557) and to Tau fibers (Kd = 5.024 nM ± 0.453), with relatively weaker binding observed for native Tau protein (Kd = 1791 nM ± 8.714) and amyloid peptide (Kd > 10,000 nM). Remarkably, this SdAb facilitated immuno-histological labeling of pathological forms of Tau in neurons and neuritic plaques, yielding a high-contrast outcome in AD patients, closely mirroring the performance of reference antibodies AT8 and T22. Furthermore, 2C5 SdAb was successfully radiolabeled with 99mTc, preserving stability for up to 6 h post-radiolabeling (radiochemical purity > 93%). However, following intravenous injection into healthy mice, the predominant uptake occurred in kidneys, amounting to 115.32 ± 3.67, 97.70 ± 43.14 and 168.20 ± 34.52% of injected dose per gram (% ID/g) at 5, 10 and 45 min respectively. Conversely, brain uptake remained minimal at all measured time points, registering at 0.17 ± 0.03, 0.12 ± 0.07 and 0.02 ± 0.01% ID/g at 5, 10 and 45 min post-injection respectively. CONCLUSION: 2C5 demonstrates excellent affinity and specificity for pathological Tau oligomers, particularly in their early stages of oligomerization. However, the current limitation of insufficient blood-brain barrier penetration necessitates further modifications before considering its application in nuclear medicine imaging for humans.


Asunto(s)
Enfermedad de Alzheimer , Anticuerpos de Dominio Único , Animales , Humanos , Ratones , Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/patología , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/metabolismo , Proteínas tau/química , Proteínas tau/inmunología , Distribución Tisular
2.
J Neurochem ; 132(5): 609-18, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25258048

RESUMEN

Previous works have shown the interest of naturally fluorescent proflavine derivatives to label Abeta deposits in vitro. This study aimed to further characterize the properties of the proflavine 3-acetylamino-6-[3-(propargylamino)propanoyl]aminoacridine (COB231) derivative as a probe. This compound was therefore evaluated on human post-mortem and mice brain slices and in vivo in 18-month-old triple transgenic mice APPswe, PS1M146V and tauP301L (3xTgAD) mice presenting the main characteristics of Alzheimer's disease (AD). COB231 labelled amyloid plaques on brain slices of AD patients, and 3xTgAD mice at 10 and 0.1 µM respectively. However, no labelling of the neurofibrillary tangle-rich areas was observed either at high concentration or in the brain of fronto-temporal dementia patients. The specificity of this mapping was attested in mice using Thioflavin S and IMPY as positive controls of amyloid deposits. After intravenous injection of COB231 in old 3xTgAD mice, fluorescent amyloid plaques were detected in the cortex and hippocampus, demonstrating COB231 blood­brain barrier permeability. We also controlled the cellular localization of COB231 on primary neuronal cultures and showed that COB231 accumulates into the cytoplasm and not into the nucleus. Finally, using a viability assay, we only detected a slight cytotoxic effect of COB231 (< 10%) for the highest concentration (100 µM).


Asunto(s)
Enfermedad de Alzheimer/patología , Inmunohistoquímica/métodos , Placa Amiloide/diagnóstico , Proflavina/análogos & derivados , Aminacrina/análogos & derivados , Aminacrina/síntesis química , Aminacrina/química , Animales , Autopsia , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Humanos , Procesamiento de Imagen Asistido por Computador , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente , Sensibilidad y Especificidad , Coloración y Etiquetado/métodos
3.
Microbiologyopen ; 8(7): e00790, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30656829

RESUMEN

Listeriosis is a severe disease caused by the opportunistic bacterial pathogen Listeria monocytogenes (L. monocytogenes). Previous studies indicate that of the four phylogenetical lineages known, lineage I strains are significantly more prevalent in clinical infections than in the environment. Among lineage 1, sequence type (ST1) belongs to the most frequent genotypes in clinical infections and behaves hyperinvasive in experimental in vitro infections compared to lineage II strains suggesting that yet uncharacterized virulence genes contribute to high virulence of certain lineage I strains. This study investigated the effect of four specific lineage I genes encoding surface proteins with internalin-like structures on cellular infection. CNS derived cell lines (fetal bovine brain cells, human microglia cells) and non-CNS derived cell lines (bovine macrophage cells, human adenocarcinoma cells) that represent the various target cells of L. monocytogenes were infected with the parental ST1 strain and deletion mutants of the four genes. Despite their association with lineage I, deletion of the four genes investigated did not dampen the hyperinvasiveness of the ST1 strain. Similarly, these genes did not contribute to the intracellular survival and intercellular spread of L. monocytogenes ST1, indicating that these genes may have other functions, either during the infection process or outside the host.

4.
Artículo en Inglés | MEDLINE | ID: mdl-29459888

RESUMEN

Listeria monocytogenes is a foodborne pathogen that causes abortion, septicemia, gastroenteritis and central nervous system (CNS) infections in ruminants and humans. L. monocytogenes strains mainly belong to two distinct phylogenetic groups, named lineages I and II. In general, clinical cases in humans and animals, in particular CNS infections, are caused by lineage I strains, while most of the environmental and food strains belong to lineage II. Little is known about why lineage I is more virulent than lineage II, even though various molecular factors and mechanisms associated with pathogenesis are known. In this study, we have used a variety of whole genome sequence analyses and comparative genomic tools in order to find characteristics that distinguish lineage I from lineage II strains and CNS infection strains from non-CNS strains. We analyzed 225 strains and identified single nucleotide variants between lineages I and II, as well as differences in the gene content. Using a novel approach based on Reads Per Kilobase per Million Mapped (RPKM), we identified 167 genes predominantly absent in lineage II but present in lineage I. These genes are mostly encoding for membrane-associated proteins. Additionally, we found 77 genes that are largely absent in the non-CNS associated strains, while 39 genes are especially lacking in our defined "non-clinical" group. Based on the RPKM analysis and the metadata linked to the L. monocytogenes strains, we identified 6 genes potentially associated with CNS cases, which include a transcriptional regulator, an ABC transporter and a non-coding RNA. Although there is not a clear separation between pathogenic and non-pathogenic strains based on phylogenetic lineages, the presence of the genes identified in our study reveals potential pathogenesis traits in ruminant L. monocytogenes strains. Ultimately, the differences that we have found in our study will help steer future studies in understanding the virulence mechanisms of the most pathogenic L. monocytogenes strains.


Asunto(s)
Enfermedades de los Animales/microbiología , Infecciones Bacterianas del Sistema Nervioso Central/veterinaria , Listeria monocytogenes/clasificación , Listeria monocytogenes/genética , Listeriosis/veterinaria , Animales , Biología Computacional/métodos , Genoma Bacteriano , Genómica , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Virulencia/genética , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA