Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 245: 114118, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36174321

RESUMEN

Mori fructus aqueous extracts (MFAEs) have been used as a traditional Chinese medicine for thousands of years with the function of strengthening the liver and tonifying the kidney. However, its inner mechanism to alleviative renal injury is unclear. To investigate the attenuation of MFAEs on nephrotoxicity and uncover its potential molecular mechanism, we established a nephrotoxicity model induced by carbon tetrachloride (CCl4). The mice were randomly divided into control group, CCl4 model group (10% CCl4), CCl4 + low and high MFAEs groups (10% CCl4 + 100 mg/kg and 200 mg/kg MFAEs). We found that MFAEs decreased the kidney index of mice, restored the pathological changes of renal structure induced by CCl4, reduced cystatin C, neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule 1 (Kim-1) blood urea nitrogen and creatinine contents in serum, promoted the nuclear transportation of Nrf2 (nuclear factor erythroid derived 2 like 2), elevated the expression of HO-1 (heme oxygenase 1), GPX4 (glutathione peroxidase 4), SLC7A11 (solute carrier family 7 member 11), ZO-1 (zonula occludens-1) and Occludin, suppressed the expression of Keap1 (kelch-like ECH-associated protein 1), HMGB1 (High Mobility Group Protein 1), ACSL4 (acyl-CoA synthetase long chain family member 4) and TXNIP (thioredoxin interacting protein), upregulated the flora of Akkermansia, Anaerotruncus, Clostridium_sensu_stricto, Ihubacter, Alcaligenes, Dysosmobacter, and downregulated the flora of Clostridium_XlVa, Helicobacter, Paramuribaculum. Overlapped with Disbiome database, Clostridium_XlVa, Akkermansia and Anaerotruncus may be the potential genera treated with renal injury. It indicated that MFAEs could ameliorate kidney injury caused by CCl4 via Nrf2 signaling.


Asunto(s)
Microbioma Gastrointestinal , Proteína HMGB1 , Animales , Tetracloruro de Carbono/metabolismo , Tetracloruro de Carbono/toxicidad , Coenzima A/metabolismo , Creatinina , Cistatina C/metabolismo , Proteína HMGB1/metabolismo , Hemo-Oxigenasa 1/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Riñón/metabolismo , Ligasas/metabolismo , Lipocalina 2/metabolismo , Ratones , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Ocludina/metabolismo , Estrés Oxidativo , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Tiorredoxinas/metabolismo
2.
Antioxidants (Basel) ; 13(6)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38929100

RESUMEN

Dampness-heat syndrome diarrhea (DHSD) is a common clinical disease with a high prevalence but still has no satisfactory therapeutic medicine, so the search for a safe and effective drug candidate is ongoing. This study aims to explore the efficacy and mechanisms of Lianweng granules (LWG) in the treatment of DHSD and to identify the blood transport components of LWG. We assessed the efficacy of LWG in DHSD by various in vivo metrics such as body weight, disease activity index (DAI), histopathologic examination, intestinal barrier function, levels of inflammatory, apoptotic biomarkers, and oxidative stress. We identified the blood components of LWG using ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry (UHPLC-MS/MS), and the resolved key components were used to explore the relevant targets. We next predicted the potential mechanisms of LWG in treating DHSD using network pharmacology and molecular docking based on the relevant targets. Finally, the mechanisms were validated in vivo using RT-qPCR, Western blotting, ELISA, and immunofluorescence and evaluated in vitro using Cell Counting Kit-8 (CCK-8), small interfering RNA, cellular enthusiasm transfer assay (CETSA), and drug affinity response target stability (DARTS). Ninety-one pharmacodynamic components of LWG enter the bloodstream and exert possible therapeutic effects. In vivo, LWG treatment improved body weight, reduced colonic injury and DAI scores, lowered inflammation, oxidative stress, and apoptosis markers, and partially restored intestinal barrier function in DHSD mice. Guided by network pharmacology and molecular docking, it is suggested that LWG may exert therapeutic effects by inhibiting IL-6/STAT3/PI3K/AKT signaling. LWG significantly decreased the expression of IL-6, p-STAT3, p-PI3K, p-AKT, and other proteins. These findings were supported by in vitro experiments, where CETSA, DARTS, and siRNA evidenced LWG's targeting of STAT3. LWG targeted STAT3 to inhibit inflammation, oxidative stress, and apoptosis in the colon, thereby restoring the intestinal barrier function to some extent and exerting a therapeutic effect on DHSD.

3.
J Ethnopharmacol ; 318(Pt A): 116806, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-37460028

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Diarrhea is a frequently encountered gastrointestinal complication in clinical practice, and E. coli is one of the main causative agents. Although Qingjie decoction (QJD) has been shown to be highly effective in treating diarrhea by eliminating heat-toxin, the underlying molecular mechanisms and pathways of QJD remain unclear. AIM OF REVIEW: The aim of this research was to explore the effects and fundamental mechanism of QJD on diarrhea induced by E.coli in rats. MATERIALS AND METHODS: Initially, we used UHPLC-MS/MS analysis to identify the chemical composition of QJD. Then, we constructed a visualization network using network pharmacology. Next, we utilized metabolomics to identify differentially expressed metabolites of QJD that are effective in treating diarrhea. RESULTS: The chemical composition of QJD was analyzed using UHPLC-MS/MS, which identified a total of 292 components. Using a network pharmacology approach, 127 bioactive compounds of QJD were screened, targeting 171 potential diarrhea treatment targets. TNF-α, IL-6, IL-1ß, and CAT were identified as important targets through visualizing the PPI network. Enrichment analysis demonstrated significant enrichment in the TNF signaling pathway, IL-17 signaling pathway, and PI3K-Akt signaling pathway. QJD showed beneficial effects, such as increased body weight, decreased fecal water content, and reduced inflammatory cell infiltration in the duodenum and colon, as well as maintaining the structure of the duodenum and colon. Metabolomic analysis revealed 32 differentially expressed metabolites in the control, model and QJD-H groups, including glucose, valine, and cysteine. Functional analysis indicated that differential metabolites were related to energy metabolism, including glucose metabolism, TCA cycle, and amino acid metabolism. CONCLUSION: QJD significantly increased body weight, decreased water content in feces, relieved inflammatory cell infiltration, maintained the structure of duodenum and colon. Combining network analysis and metabolomics, QJD exerted therapeutic effects by inhibiting inflammation and oxidative stress, regulating glucose metabolism, tricarboxylic acid metabolism, and amino acid metabolism.


Asunto(s)
Medicamentos Herbarios Chinos , Animales , Ratas , Escherichia coli , Fosfatidilinositol 3-Quinasas , Espectrometría de Masas en Tándem , Metabolómica , Metabolismo Energético , Diarrea/inducido químicamente , Diarrea/tratamiento farmacológico , Cisteína , Glucosa , Inflamación , Peso Corporal , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
4.
Antioxidants (Basel) ; 12(5)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37237988

RESUMEN

Pingwei San (PWS) has been used for more than a thousand years as a traditional Chinese medicine prescription for treating spleen-deficiency diarrhea (SDD). Nevertheless, the exact mechanism by which it exerts its antidiarrheal effects remains unclear. The objective of this investigation was to explore the antidiarrheal efficacy of PWS and its mechanism of action in SDD induced by Rhubarb. To this end, UHPLC-MS/MS was used to identify the chemical composition of PWS, while the body weight, fecal moisture content, and colon pathological alterations were used to evaluate the effects of PWS on the Rhubarb-induced rat model of SDD. Additionally, quantitative polymerase chain reaction (qPCR) and immunohistochemistry were employed to assess the expression of inflammatory factors, aquaporins (AQPs), and tight junction markers in the colon tissues. Furthermore, 16S rRNA was utilized to determine the impact of PWS on the intestinal flora of SDD rats. The findings revealed that PWS increased body weight, reduced fecal water content, and decreased inflammatory cell infiltration in the colon. It also promoted the expression of AQPs and tight junction markers and prevented the loss of colonic cup cells in SDD rats. In addition, PWS significantly increased the abundance of Prevotellaceae, Eubacterium_ruminantium_group, and Tuzzerella, while decreasing the abundance of Ruminococcus and Frisingicoccus in the feces of SDD rats. The LEfSe analysis revealed that Prevotella, Eubacterium_ruminantium_group, and Pantoea were relatively enriched in the PWS group. Overall, the findings of this study indicate that PWS exerted a therapeutic effect on Rhubarb-induced SDD in rats by both protecting the intestinal barrier and modulating the imbalanced intestinal microbiota.

5.
Phytomedicine ; 92: 153743, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34583225

RESUMEN

BACKGROUND: Shaoyao decoction (SYD), a traditional Chinese medicine prescription that originated in the Jin-Yuan Dynasty, has shown effects in treating ulcerative colitis. However, the underlying mechanism is unclear. We combined network pharmacology with molecular biology technology to detect the mechanism underlying the effect of SYD on ulcerative colitis. We combined network pharmacology with molecular biology technology to detected the further mechanism in SYD effect on ulcerative colitis. PURPOSE: In this study, we investigated the mechanism by which SYD exerts a protective effect against ulcerative colitis in vivo and in vitro. STUDY DESIGN AND METHODS: We focused on two aspects of the mechanism by which SYD relieves ulcerative colitis, regulation of the MAPK cascade and the NF-κB signaling pathway, through analysis of the "active ingredient-target-disease" network followed by GO enrichment and KEGG pathway analysis according to network pharmacology. Mice with ulcerative colitis underwent 5% dextran sulfate sodium (DSS), and the RAW 264.7 cell model was used to identify important targets. RESULTS: We found that after 5% DSS treatment, the inflammation indexes and the expression of NLRP3-related proteins were increased concomitant with the loss of mucins and occludin. Treatment with SYD (2.25 g/kg, BW) significantly improved the expression of mucins and occludin after DSS at the protein and transcriptional levels. Furthermore, SYD treatment significantly reduced NF-κB P65 and P38 expression, thus exerting a great antinecrotic effect, as revealed by TUNEL staining and Western blotting. The beneficial effects of SYD were almost canceled by NSC 95397 (an inhibitor of mitogen-activated protein kinase phosphatase-1 (MKP1)) after DSS treatment in vivo or LPS treatment in vitro. In addition, treatment with SYD reduced caspase-1 activity and rescued the release of ASC and GSDMD, thus inhibiting the assembly of NLRP3 and maintaining the integrity of the intestinal barrier. We also conducted in vitro experiments in the LPS-induced RAW 264.7 cell model and found that cells incubated with 1 mg/ml SYD for 24 h possessed the highest cell viability. Next, we incubated 1 mg/ml SYD for 24 h after treatment with 1 µg/ml LPS for 6 h. We showed that 1 mg/ml SYD displayed anti-inflammatory and anti-necrotic effects through the NLRP3, NF-κB P65 and P38 pathways, and the effects of SYD were also inhibited by 10 nM NSC 95397. CONCLUSION: These results demonstrate that SYD has protective effects against ulcerative colitis and alleviates pyroptosis by inhibiting the MKP1/NF-κB/NLRP3 pathway.


Asunto(s)
Colitis Ulcerosa , Colitis , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Sulfato de Dextran , Inflamasomas , Macrófagos , Ratones , Ratones Endogámicos C57BL , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA