Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
EMBO Rep ; 20(4)2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30833341

RESUMEN

Post-translational modifications of histone H3 N-terminal tails are key epigenetic regulators of virulence gene expression and sexual commitment in the human malaria parasite Plasmodium falciparum Here, we identify proteolytic clipping of the N-terminal tail of nucleosome-associated histone H3 at amino acid position 21 as a new chromatin modification. A cathepsin C-like proteolytic clipping activity is observed in nuclear parasite extracts. Notably, an ectopically expressed version of clipped histone H3, PfH3p-HA, is targeted to the nucleus and integrates into mononucleosomes. Furthermore, chromatin immunoprecipitation and next-generation sequencing analysis identified PfH3p-HA as being highly enriched in the upstream region of six genes that play a key role in DNA replication and repair: In these genes, PfH3p-HA demarcates a specific 1.5 kb chromatin island adjacent to the open reading frame. Our results indicate that, in P. falciparum, the process of histone clipping may precede chromatin integration hinting at preferential targeting of pre-assembled PfH3p-containing nucleosomes to specific genomic regions. The discovery of a protease-directed mode of chromatin organization in P. falciparum opens up new avenues to develop new anti-malarials.


Asunto(s)
Replicación del ADN , Histonas/metabolismo , Malaria Falciparum/parasitología , Nucleosomas/metabolismo , Plasmodium falciparum/fisiología , Regiones no Traducidas 5' , Secuencia de Aminoácidos , Inmunoprecipitación de Cromatina , Expresión Génica Ectópica , Eritrocitos/parasitología , Regulación de la Expresión Génica , Histonas/química , Histonas/genética , Humanos , Inhibidores de Proteasas/farmacología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteolisis/efectos de los fármacos
2.
J Nanosci Nanotechnol ; 16(6): 5696-700, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27427617

RESUMEN

In this manuscript we review work of our group on the assembly of lipid layers on top of polyelectrolyte multilayers (PEMs). The assembly of lipid layers with zwitterionic and charged lipids on PEMs is studied as a function of lipid and polyelectrolyte composition by the Quartz Crystal Microbalance. Polyelectrolyte lipid interactions are studied by means of Atomic Force Spectroscopy. We also show the coating of lipid layers for engineering different nanomaterials, i.e., carbon nanotubes and poly(lactic-co-glycolic) nanoparticles and how these can be used to decrease in vitro toxicity and to direct the intracellular localization of nanomaterials.


Asunto(s)
Ingeniería , Ácido Láctico/química , Membrana Dobles de Lípidos/química , Nanopartículas/química , Nanotecnología , Nanotubos de Carbono/química , Ácido Poliglicólico/química , Transporte Biológico , Células Hep G2 , Humanos , Espacio Intracelular/metabolismo , Membrana Dobles de Lípidos/metabolismo , Modelos Moleculares , Conformación Molecular , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Tecnicas de Microbalanza del Cristal de Cuarzo , Propiedades de Superficie
3.
G3 (Bethesda) ; 14(10)2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39172650

RESUMEN

Over the last 10 years, global raspberry production has increased by 47.89%, based mainly on the red raspberry species (Rubus idaeus). However, the black raspberry (Rubus occidentalis), although less consumed, is resistant to one of the most important diseases for the crop, the late leaf rust caused by Acculeastrum americanum fungus. In this context, genetic resistance is the most sustainable way to control the disease, mainly because there are no registered fungicides for late leaf rust in Brazil. Therefore, the aim was to understand the genetic architecture that controls resistance to late leaf rust in raspberries. For that, we used an interspecific multiparental population using the species mentioned above as parents, 2 different statistical approaches to associate the phenotypes with markers [GWAS (genome-wide association studies) and copula graphical models], and 2 phenotyping methodologies from the first to the 17th day after inoculation (high-throughput phenotyping with a multispectral camera and traditional phenotyping by disease severity scores). Our findings indicate that a locus of higher effect, at position 13.3 Mb on chromosome 5, possibly controls late leaf rust resistance, as both GWAS and the network suggested the same marker. Of the 12 genes flanking its region, 4 were possible receptors, 3 were likely defense executors, 1 gene was likely part of signaling cascades, and 4 were classified as nondefense related. Although the network and GWAS indicated the same higher effect genomic region, the network identified other different candidate regions, potentially complementing the genetic control comprehension.


Asunto(s)
Basidiomycota , Resistencia a la Enfermedad , Estudio de Asociación del Genoma Completo , Fenotipo , Enfermedades de las Plantas , Rubus , Resistencia a la Enfermedad/genética , Rubus/microbiología , Rubus/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Hojas de la Planta/microbiología , Hojas de la Planta/genética , Polimorfismo de Nucleótido Simple , Mapeo Cromosómico
4.
Sci Rep ; 13(1): 15216, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37709795

RESUMEN

Raspberries (Rubus spp) are temperate climate fruits with profitable high returns and have the potential for diversification of fruit growing in mid to low-latitude regions. However, there are still no cultivars adapted to climatic conditions and high pressure of diseases that occurs in tropical areas. In this context, our objective was to evaluate the genetic diversity from a 116 raspberry genotypes panel obtained from interspecific crosses in a testcross scheme with four cultivars already introduced in Brazil. The panel was genotyped via genotyping-by-sequencing. 28,373 and 27,281 SNPs were obtained, using the species R. occidentalis and R. idaeus genomes as references, respectively. A third marker dataset was constructed consisting of 41,292 non-coincident markers. Overall, there were no differences in the results when using the different marker sets for the subsequent analyses. The mean heterozygosity was 0.54. The average effective population size was 174, indicating great genetic variability. The other analyses revealed that the half-sibling families were structured in three groups. It is concluded that the studied panel has great potential for breeding and further genetic studies. Moreover, only one of the three marker matrices is sufficient for diversity studies.


Asunto(s)
Basidiomycota , Enfermedades del Tejido Conjuntivo , Eccema , Enfermedades del Sistema Inmune , Rubus , Enfermedades Cutáneas Bacterianas , Humanos , Fitomejoramiento , Brasil , Enfermedades de las Plantas/genética
5.
Pharmaceutics ; 13(6)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201333

RESUMEN

Cancer is a heterogeneous and complex disease. Traditional cancer therapy is associated with low therapeutic index, acquired resistance, and various adverse effects. With the increasing understanding of cancer biology and technology advancements, more strategies have been exploited to optimize the therapeutic outcomes. The rapid development and application of nanomedicine have motivated this progress. Combinational regimen, for instance, has become an indispensable approach for effective cancer treatment, including the combination of chemotherapeutic agents, chemo-energy, chemo-gene, chemo-small molecules, and chemo-immunology. Additionally, smart nanoplatforms that respond to external stimuli (such as light, temperature, ultrasound, and magnetic field), and/or to internal stimuli (such as changes in pH, enzymes, hypoxia, and redox) have been extensively investigated to improve precision therapy. Smart nanoplatforms for combinational therapy have demonstrated the potential to be the next generation cancer treatment regimen. This review aims to highlight the recent advances in smart combinational therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA