Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 153(3): 707-20, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23622250

RESUMEN

The genetics of complex disease produce alterations in the molecular interactions of cellular pathways whose collective effect may become clear through the organized structure of molecular networks. To characterize molecular systems associated with late-onset Alzheimer's disease (LOAD), we constructed gene-regulatory networks in 1,647 postmortem brain tissues from LOAD patients and nondemented subjects, and we demonstrate that LOAD reconfigures specific portions of the molecular interaction structure. Through an integrative network-based approach, we rank-ordered these network structures for relevance to LOAD pathology, highlighting an immune- and microglia-specific module that is dominated by genes involved in pathogen phagocytosis, contains TYROBP as a key regulator, and is upregulated in LOAD. Mouse microglia cells overexpressing intact or truncated TYROBP revealed expression changes that significantly overlapped the human brain TYROBP network. Thus the causal network structure is a useful predictor of response to gene perturbations and presents a framework to test models of disease mechanisms underlying LOAD.


Asunto(s)
Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Redes Reguladoras de Genes , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Teorema de Bayes , Encéfalo/patología , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Microglía/metabolismo
2.
Entropy (Basel) ; 25(8)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37628148

RESUMEN

Mapping network nodes and edges to communities and network functions is crucial to gaining a higher level of understanding of the network structure and functions. Such mappings are particularly challenging to design for covert social networks, which intentionally hide their structure and functions to protect important members from attacks or arrests. Here, we focus on correctly inferring the structures and functions of such networks, but our methodology can be broadly applied. Without the ground truth, knowledge about the allocation of nodes to communities and network functions, no single network based on the noisy data can represent all plausible communities and functions of the true underlying network. To address this limitation, we apply a generative model that randomly distorts the original network based on the noisy data, generating a pool of statistically equivalent networks. Each unique generated network is recorded, while each duplicate of the already recorded network just increases the repetition count of that network. We treat each such network as a variant of the ground truth with the probability of arising in the real world approximated by the ratio of the count of this network's duplicates plus one to the total number of all generated networks. Communities of variants with frequently occurring duplicates contain persistent patterns shared by their structures. Using Shannon entropy, we can find a variant that minimizes the uncertainty for operations planned on the network. Repeatedly generating new pools of networks from the best network of the previous step for several steps lowers the entropy of the best new variant. If the entropy is too high, the network operators can identify nodes, the monitoring of which can achieve the most significant reduction in entropy. Finally, we also present a heuristic for constructing a new variant, which is not randomly generated but has the lowest expected cost of operating on the distorted mappings of network nodes to communities and functions caused by noisy data.

3.
Am J Hum Genet ; 105(3): 562-572, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31447098

RESUMEN

Deciphering the environmental contexts at which genetic effects are most prominent is central for making full use of GWAS results in follow-up experiment design and treatment development. However, measuring a large number of environmental factors at high granularity might not always be feasible. Instead, here we propose extracting cellular embedding of environmental factors from gene expression data by using latent variable (LV) analysis and taking these LVs as environmental proxies in detecting gene-by-environment (GxE) interaction effects on gene expression, i.e., GxE expression quantitative trait loci (eQTLs). Applying this approach to two largest brain eQTL datasets (n = 1,100), we show that LVs and GxE eQTLs in one dataset replicate well in the other dataset. Combining the two samples via meta-analysis, 895 GxE eQTLs are identified. On average, GxE effect explains an additional ∼4% variation in expression of each gene that displays a GxE effect. Ten of these 52 genes are associated with cell-type-specific eQTLs, and the remaining genes are multi-functional. Furthermore, after substituting LVs with expression of transcription factors (TF), we found 91 TF-specific eQTLs, which demonstrates an important use of our brain GxE eQTLs.


Asunto(s)
Encéfalo/metabolismo , Genotipo , Transcriptoma , Humanos , Sitios de Carácter Cuantitativo
4.
PLoS Comput Biol ; 16(8): e1008120, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32804935

RESUMEN

Complexity of cell-type composition has created much skepticism surrounding the interpretation of bulk tissue transcriptomic studies. Recent studies have shown that deconvolution algorithms can be applied to computationally estimate cell-type proportions from gene expression data of bulk blood samples, but their performance when applied to brain tissue is unclear. Here, we have generated an immunohistochemistry (IHC) dataset for five major cell-types from brain tissue of 70 individuals, who also have bulk cortical gene expression data. With the IHC data as the benchmark, this resource enables quantitative assessment of deconvolution algorithms for brain tissue. We apply existing deconvolution algorithms to brain tissue by using marker sets derived from human brain single cell and cell-sorted RNA-seq data. We show that these algorithms can indeed produce informative estimates of constituent cell-type proportions. In fact, neuronal subpopulations can also be estimated from bulk brain tissue samples. Further, we show that including the cell-type proportion estimates as confounding factors is important for reducing false associations between Alzheimer's disease phenotypes and gene expression. Lastly, we demonstrate that using more accurate marker sets can substantially improve statistical power in detecting cell-type specific expression quantitative trait loci (eQTLs).


Asunto(s)
Algoritmos , Encéfalo , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Transcriptoma/genética , Encéfalo/citología , Encéfalo/metabolismo , Biología Computacional , Humanos , Inmunohistoquímica , Especificidad de Órganos/genética , Fenotipo , Sitios de Carácter Cuantitativo/genética , Análisis de la Célula Individual
5.
Learn Mem ; 27(9): 355-371, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32817302

RESUMEN

Individual differences in cognitive decline during normal aging and Alzheimer's disease (AD) are common, but the molecular mechanisms underlying these distinct outcomes are not fully understood. We utilized a combination of genetic, molecular, and behavioral data from a mouse population designed to model human variation in cognitive outcomes to search for the molecular mechanisms behind this population-wide variation. Specifically, we used a systems genetics approach to relate gene expression to cognitive outcomes during AD and normal aging. Statistical causal-inference Bayesian modeling was used to model systematic genetic perturbations matched with cognitive data that identified astrocyte and microglia molecular networks as drivers of cognitive resilience to AD. Using genetic mapping, we identified Fgf2 as a potential regulator of the astrocyte network associated with individual differences in short-term memory. We also identified several immune genes as regulators of a microglia network associated with individual differences in long-term memory, which was partly mediated by amyloid burden. Finally, significant overlap between mouse and two different human coexpression networks provided strong evidence of translational relevance for the genetically diverse AD-BXD panel as a model of late-onset AD. Together, this work identified two candidate molecular pathways enriched for microglia and astrocyte genes that serve as causal AD cognitive biomarkers, and provided a greater understanding of processes that modulate individual and population-wide differences in cognitive outcomes during AD.


Asunto(s)
Envejecimiento , Enfermedad de Alzheimer , Astrocitos , Disfunción Cognitiva , Reserva Cognitiva , Regulación de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Microglía , Envejecimiento/genética , Envejecimiento/inmunología , Envejecimiento/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Animales , Conducta Animal/fisiología , Biomarcadores , Encéfalo , Disfunción Cognitiva/genética , Disfunción Cognitiva/inmunología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/fisiopatología , Reserva Cognitiva/fisiología , Femenino , Humanos , Individualidad , Masculino , Ratones , Ratones Transgénicos , Modelos Genéticos
6.
Ann Neurol ; 84(1): 78-88, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29908079

RESUMEN

OBJECTIVE: Previous gene expression analysis identified a network of coexpressed genes that is associated with ß-amyloid neuropathology and cognitive decline in older adults. The current work targeted influential genes in this network with quantitative proteomics to identify potential novel therapeutic targets. METHODS: Data came from 834 community-based older persons who were followed annually, died, and underwent brain autopsy. Uniform structured postmortem evaluations assessed the burden of ß-amyloid and other common age-related neuropathologies. Selected reaction monitoring quantified cortical protein abundance of 12 genes prioritized from a molecular network of aging human brain that is implicated in Alzheimer's dementia. Regression and linear mixed models examined the protein associations with ß-amyloid load and other neuropathological indices as well as cognitive decline over multiple years preceding death. RESULTS: Average age at death was 88.6 years. Overall, 349 participants (41.9%) had Alzheimer's dementia at death. A higher level of PLXNB1 abundance was associated with more ß-amyloid load (p = 1.0 × 10-7 ) and higher PHFtau tangle density (p = 2.3 × 10-7 ), and the association of PLXNB1 with cognitive decline is mediated by these known Alzheimer's disease pathologies. On the other hand, higher IGFBP5, HSPB2, and AK4 and lower ITPK1 levels were associated with faster cognitive decline, and, unlike PLXNB1, these associations were not fully explained by common neuropathological indices, suggesting novel mechanisms leading to cognitive decline. INTERPRETATION: Using targeted proteomics, this work identified cortical proteins involved in Alzheimer's dementia and begins to dissect two different molecular pathways: one affecting ß-amyloid deposition and another affecting resilience without a known pathological footprint. Ann Neurol 2018;83:78-88.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Anciano de 80 o más Años , Enfermedad de Alzheimer/complicaciones , Péptidos beta-Amiloides/metabolismo , Autopsia , Trastornos del Conocimiento/etiología , Proteínas de Unión al ADN , Femenino , Proteínas de Choque Térmico HSP27/metabolismo , Humanos , Proteína 5 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Masculino , Proteínas del Tejido Nervioso/metabolismo , Pruebas Neuropsicológicas , Mapas de Interacción de Proteínas , Proteoma/genética , Receptores de Superficie Celular/metabolismo , Características de la Residencia
7.
Alzheimers Dement ; 15(2): 258-266, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30321502

RESUMEN

INTRODUCTION: Apolipoprotein E (APOE) is a susceptibility gene for late-onset Alzheimer's disease neuropathology; less is known about the relationship between APOE and cerebrovascular disease (CVD) neuropathology. METHODS: We investigated associations of APOE status with arteriolosclerosis, macroinfarcts and microinfarcts, and atherosclerosis in 1383 adults (65.9-108.2 years at death) with and without dementia. Excluding ε2/ε4 carriers, multivariable regressions for each CVD-related neuropathology compared ε4 and ε2 carriers to ε3/ε3 carriers adjusting for confounders including age and Alzheimer's neuropathology. RESULTS: Three hundred forty-two individuals (24.7%; ∼87.7 years at death; 39.9% nondemented) were ε3/ε4 or ε4/ε4, and 180 (13.0%; ∼89.9 years at death; 66.6% nondemented) were ε2/ε3 or ε2/ε2. ε4 carriers had higher odds of macroinfarcts (odds ratio = 1.41, 95% confidence interval: 1.02-1.94, P = .03), whereas ε2 carriers had higher odds of moderate-to-severe arteriolosclerosis (odds ratio = 1.68, 95% confidence interval: 1.15-2.45, P = .006) compared to ε3/ε3 carriers. Age-stratified analyses suggested that these relationships were driven by ε4 carriers <90 years at death and ε2 carriers ≥90 years at death, respectively. DISCUSSION: APOE differentially affects type and timing of CVD-related neuropathology.


Asunto(s)
Enfermedad de Alzheimer/genética , Apolipoproteínas E/genética , Trastornos Cerebrovasculares/genética , Predisposición Genética a la Enfermedad , Genotipo , Anciano , Anciano de 80 o más Años , Alelos , Femenino , Heterocigoto , Humanos , Masculino , Factores de Riesgo
8.
PLoS Med ; 15(9): e1002647, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30180184

RESUMEN

BACKGROUND: There are few data concerning the association between season and cognition and its neurobiological correlates in older persons-effects with important translational and therapeutic implications for the diagnosis and treatment of Alzheimer disease (AD). We aimed to measure these effects. METHODS AND FINDINGS: We analyzed data from 3,353 participants from 3 observational community-based cohort studies of older persons (the Rush Memory and Aging Project [MAP], the Religious Orders Study [ROS], and the Minority Aging Research Study [MARS]) and 2 observational memory-clinic-based cohort studies (Centre de Neurologie Cognitive [CNC] study at Lariboisière Hospital and the Sunnybrook Dementia Study [SDS]). We performed neuropsychological testing and, in subsets of participants, evaluated cerebrospinal fluid AD biomarkers, standardized structured autopsy measures, and/or prefrontal cortex gene expression by RNA sequencing. We examined the association between season and these variables using nested multiple linear and logistic regression models. There was a robust association between season and cognition that was replicated in multiple cohorts (amplitude = 0.14 SD [a measure of the magnitude of seasonal variation relative to overall variability; 95% CI 0.07-0.23], p = 0.007, in the combined MAP, ROS, and MARS cohorts; amplitude = 0.50 SD [95% CI 0.07-0.66], p = 0.017, in the SDS cohort). Average composite global cognitive function was higher in the summer and fall compared to winter and spring, with the difference equivalent in cognitive effect to 4.8 years' difference in age (95% CI 2.1-8.4, p = 0.002). Further, the odds of meeting criteria for mild cognitive impairment or dementia were higher in the winter and spring (odds ratio 1.31 [95% CI 1.10-1.57], p = 0.003). These results were robust against multiple potential confounders including depressive symptoms, sleep, physical activity, and thyroid status and persisted in cases with AD pathology. Moreover, season had a marked effect on cerebrospinal fluid Aß 42 level (amplitude 0.30 SD [95% CI 0.10-0.64], p = 0.003), which peaked in the summer, and on the brain expression of 4 cognition-associated modules of co-expressed genes (m6: amplitude = 0.44 SD [95% CI 0.21-0.65], p = 0.0021; m13: amplitude = 0.46 SD [95% CI 0.27-0.76], p = 0.0009; m109: amplitude = 0.43 SD [95% CI 0.24-0.67], p = 0.0021; and m122: amplitude 0.46 SD [95% CI 0.20-0.71], p = 0.0012), which were in phase or anti-phase to the rhythms of cognition and which were in turn associated with binding sites for several seasonally rhythmic transcription factors including BCL11A, CTCF, EGR1, MEF2C, and THAP1. Limitations include the evaluation of each participant or sample once per annual cycle, reliance on self-report for measurement of environmental and behavioral factors, and potentially limited generalizability to individuals in equatorial regions or in the southern hemisphere. CONCLUSIONS: Season has a clinically significant association with cognition and its neurobiological correlates in older adults with and without AD pathology. There may be value in increasing dementia-related clinical resources in the winter and early spring, when symptoms are likely to be most pronounced. Moreover, the persistence of robust seasonal plasticity in cognition and its neurobiological correlates, even in the context of concomitant AD pathology, suggests that targeting environmental or behavioral drivers of seasonal cognitive plasticity, or the key transcription factors and genes identified in this study as potentially mediating these effects, may allow us to substantially improve cognition in adults with and without AD.


Asunto(s)
Enfermedad de Alzheimer/psicología , Cognición , Estaciones del Año , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/genética , Biomarcadores/líquido cefalorraquídeo , Encéfalo/patología , Estudios de Cohortes , Estudios Transversales , Femenino , Expresión Génica , Humanos , Modelos Lineales , Modelos Logísticos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Corteza Prefrontal/metabolismo
9.
Nat Neurosci ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187705

RESUMEN

Proteomics can shed light on the dynamic and multifaceted alterations in neurodegenerative disorders like Alzheimer's disease (AD). Combining radioligands measuring ß-amyloid (Aß) plaques and tau tangles with cerebrospinal fluid proteomics, we uncover molecular events mirroring different stages of AD pathology in living humans. We found 127 differentially abundant proteins (DAPs) across the AD spectrum. The strongest Aß-related proteins were mainly expressed in glial cells and included SMOC1 and ITGAM. A dozen proteins linked to ATP metabolism and preferentially expressed in neurons were independently associated with tau tangle load and tau accumulation. Only 20% of the DAPs were also altered in other neurodegenerative diseases, underscoring AD's distinct proteome. Two co-expression modules related, respectively, to protein metabolism and microglial immune response encompassed most DAPs, with opposing, staggered trajectories along the AD continuum. We unveil protein signatures associated with Aß and tau proteinopathy in vivo, offering insights into complex neural responses and potential biomarkers and therapeutics targeting different disease stages.

10.
medRxiv ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38947084

RESUMEN

The pathophysiology underlying various manifestations of cerebral small vessel disease (cSVD) remains obscure. Using cerebrospinal fluid proximity extension assays and co-expression network analysis of 2,943 proteins, we found common and distinct proteomic signatures between white matter lesions (WML), microbleeds and infarcts measured in 856 living patients, and validated WML-associated proteins in three additional datasets. Proteins indicative of extracellular matrix dysregulation and vascular remodeling, including ELN, POSTN, CCN2 and MMP12 were elevated across all cSVD manifestations, with MMP12 emerging as an early cSVD indicator. cSVD-associated proteins formed a co-abundance network linked to metabolism and enriched in endothelial and arterial smooth muscle cells, showing elevated levels at early disease manifestations. Later disease stages involved changes in microglial proteins, associated with longitudinal WML progression, and changes in neuronal proteins mediating WML-associated cognitive decline. These findings provide an atlas of novel cSVD biomarkers and a promising roadmap for the next generation of cSVD therapeutics.

11.
medRxiv ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39185527

RESUMEN

Advances have led to a greater understanding of the genetics of Alzheimer's Disease (AD). However, the gap between the predicted and observed genetic heritability estimates when using single nucleotide polymorphisms (SNPs) and small indel data remains. Large genomic rearrangements, known as structural variants (SVs), have the potential to account for this missing genetic heritability. By leveraging data from two ongoing cohort studies of aging and dementia, the Religious Orders Study and Rush Memory and Aging Project (ROS/MAP), we performed genome-wide association analysis testing around 20,000 common SVs from 1,088 participants with whole genome sequencing (WGS) data. A range of Alzheimer's Disease and Related Disorders (AD/ADRD) clinical and pathologic traits were examined. Given the limited sample size, no genome-wide significant association was found, but we mapped SVs across 81 AD risk loci and discovered 22 SVs in linkage disequilibrium (LD) with GWAS lead variants and directly associated with AD/ADRD phenotypes (nominal P < 0.05). The strongest association was a deletion of an Alu element in the 3'UTR of the TMEM106B gene. This SV was in high LD with the respective AD GWAS locus and was associated with multiple AD/ADRD phenotypes, including tangle density, TDP-43, and cognitive resilience. The deletion of this element was also linked to lower TMEM106B protein abundance. We also found a 22 kb deletion associated with depression in ROSMAP and bearing similar association patterns as AD GWAS SNPs at the IQCK locus. In addition, genome-wide scans allowed the identification of 7 SVs, with no LD with SNPs and nominally associated with AD/ADRD traits. This result suggests potentially new ADRD risk loci not discoverable using SNP data. Among these findings, we highlight a 5.6 kb duplication of coding regions of the gene C1orf186 at chromosome 1 associated with indices of cognitive impairment, decline, and resilience. While further replication in independent datasets is needed to validate these findings, our results support the potential roles of common structural variations in the pathogenesis of AD/ADRD.

12.
Genome Biol ; 24(1): 228, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828545

RESUMEN

Clustering molecular data into informative groups is a primary step in extracting robust conclusions from big data. However, due to foundational issues in how they are defined and detected, such clusters are not always reliable, leading to unstable conclusions. We compare popular clustering algorithms across thousands of synthetic and real biological datasets, including a new consensus clustering algorithm-SpeakEasy2: Champagne. These tests identify trends in performance, show no single method is universally optimal, and allow us to examine factors behind variation in performance. Multiple metrics indicate SpeakEasy2 generally provides robust, scalable, and informative clusters for a range of applications.


Asunto(s)
Algoritmos , Perfilación de la Expresión Génica , Perfilación de la Expresión Génica/métodos , Análisis por Conglomerados , Macrodatos
13.
Nat Commun ; 14(1): 7036, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923721

RESUMEN

Emerging evidence shows that the meninges conduct essential immune surveillance and immune defense at the brain border, and the dysfunction of meningeal immunity contributes to aging and neurodegeneration. However, no study exists on the molecular properties of cell types within human leptomeninges. Here, we provide single nuclei profiling of dissected postmortem leptomeninges from aged individuals. We detect diverse cell types, including unique meningeal endothelial, mural, and fibroblast subtypes. For immune cells, we show that most T cells express CD8 and bear characteristics of tissue-resident memory T cells. We also identify distinct subtypes of border-associated macrophages (BAMs) that display differential gene expressions from microglia and express risk genes for Alzheimer's Disease (AD), as nominated by genome-wide association studies (GWAS). We discover cell-type-specific differentially expressed genes in individuals with Alzheimer's dementia, particularly in fibroblasts and BAMs. Indeed, when cultured, leptomeningeal cells display the signature of ex vivo AD fibroblasts upon amyloid-ß treatment. We further explore ligand-receptor interactions within the leptomeningeal niche and computationally infer intercellular communications in AD. Thus, our study establishes a molecular map of human leptomeningeal cell types, providing significant insight into the border immune and fibrotic responses in AD.


Asunto(s)
Enfermedad de Alzheimer , Estudio de Asociación del Genoma Completo , Humanos , Anciano , Meninges , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Macrófagos/metabolismo , Envejecimiento , Microglía/metabolismo
14.
bioRxiv ; 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37546752

RESUMEN

Neuroimaging is commonly used to infer human brain connectivity, but those measurements are far-removed from the molecular underpinnings at synapses. To uncover the molecular basis of human brain connectivity, we analyzed a unique cohort of 98 individuals who provided neuroimaging and genetic data contemporaneous with dendritic spine morphometric, proteomic, and gene expression data from the superior frontal and inferior temporal gyri. Through cellular contextualization of the molecular data with dendritic spine morphology, we identified hundreds of proteins related to synapses, energy metabolism, and RNA processing that explain between-individual differences in functional connectivity and structural covariation. By integrating data at the genetic, molecular, subcellular, and tissue levels, we bridged the divergent fields of molecular biology and neuroimaging to identify a molecular basis of brain connectivity. One-Sentence Summary: Dendritic spine morphometry and synaptic proteins unite the divergent fields of molecular biology and neuroimaging.

15.
Cell Rep ; 42(11): 113439, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37963017

RESUMEN

Human brain size changes dynamically through early development, peaks in adolescence, and varies up to 2-fold among adults. However, the molecular genetic underpinnings of interindividual variation in brain size remain unknown. Here, we leveraged postmortem brain RNA sequencing and measurements of brain weight (BW) in 2,531 individuals across three independent datasets to identify 928 genome-wide significant associations with BW. Genes associated with higher or lower BW showed distinct neurodevelopmental trajectories and spatial patterns that mapped onto functional and cellular axes of brain organization. Expression of BW genes was predictive of interspecies differences in brain size, and bioinformatic annotation revealed enrichment for neurogenesis and cell-cell communication. Genome-wide, transcriptome-wide, and phenome-wide association analyses linked BW gene sets to neuroimaging measurements of brain size and brain-related clinical traits. Cumulatively, these results represent a major step toward delineating the molecular pathways underlying human brain size variation in health and disease.


Asunto(s)
Encéfalo , Transcriptoma , Adulto , Humanos , Tamaño de los Órganos , Encéfalo/metabolismo , Fenotipo , Estudio de Asociación del Genoma Completo/métodos , Biología Molecular , Predisposición Genética a la Enfermedad
16.
Nat Commun ; 13(1): 655, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115553

RESUMEN

Identifying the molecular systems and proteins that modify the progression of Alzheimer's disease and related dementias (ADRD) is central to drug target selection. However, discordance between mRNA and protein abundance, and the scarcity of proteomic data, has limited our ability to advance candidate targets that are mainly based on gene expression. Therefore, by using a deep neural network that predicts protein abundance from mRNA expression, here we attempt to track the early protein drivers of ADRD. Specifically, by applying the clei2block deep learning model to 1192 brain RNA-seq samples, we identify protein modules and disease-associated expression changes that were not directly observed at the mRNA level. Moreover, pseudo-temporal trajectory inference based on the predicted proteome became more closely correlated with cognitive decline and hippocampal atrophy compared to RNA-based trajectories. This suggests that the predicted changes in protein expression could provide a better molecular representation of ADRD progression. Furthermore, overlaying clinical traits on protein pseudotime trajectory identifies protein modules altered before cognitive impairment. These results demonstrate how our method can be used to identify potential early protein drivers and possible drug targets for treating and/or preventing ADRD.


Asunto(s)
Enfermedad de Alzheimer/genética , Demencia/genética , Redes Neurales de la Computación , Proteoma/genética , Proteómica/métodos , ARN Mensajero/genética , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Aprendizaje Profundo , Demencia/metabolismo , Femenino , Humanos , Masculino , Espectrometría de Masas/métodos , Biosíntesis de Proteínas , Proteoma/metabolismo , ARN Mensajero/metabolismo , RNA-Seq/métodos , Transcriptoma/genética
17.
Nat Neurosci ; 25(2): 213-225, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35115731

RESUMEN

The biological processes that are disrupted in the Alzheimer's disease (AD) brain remain incompletely understood. In this study, we analyzed the proteomes of more than 1,000 brain tissues to reveal new AD-related protein co-expression modules that were highly preserved across cohorts and brain regions. Nearly half of the protein co-expression modules, including modules significantly altered in AD, were not observed in RNA networks from the same cohorts and brain regions, highlighting the proteopathic nature of AD. Two such AD-associated modules unique to the proteomic network included a module related to MAPK signaling and metabolism and a module related to the matrisome. The matrisome module was influenced by the APOE ε4 allele but was not related to the rate of cognitive decline after adjustment for neuropathology. By contrast, the MAPK/metabolism module was strongly associated with the rate of cognitive decline. Disease-associated modules unique to the proteome are sources of promising therapeutic targets and biomarkers for AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Disfunción Cognitiva/patología , Humanos , Proteoma , Proteómica , ARN/metabolismo
18.
Sci Rep ; 11(1): 11311, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34050212

RESUMEN

Motor resilience proteins may be a high value therapeutic target that offset the negative effects of pathologies on motor function. This study sought to identify cortical proteins associated with motor decline unexplained by brain pathologies that provide motor resilience. We studied 1226 older decedents with annual motor testing, postmortem brain pathologies and quantified 226 proteotypic peptides in prefrontal cortex. Twenty peptides remained associated with motor decline in models controlling for ten brain pathologies (FDR < 0.05). Higher levels of nine peptides and lower levels of eleven peptides were related to slower decline. A higher motor resilience protein score based on averaging the levels of all 20 peptides was related to slower motor decline, less severe parkinsonism and lower odds of mobility disability before death. Cortical proteins may provide motor resilience. Targeting these proteins in further drug discovery may yield novel interventions to maintain motor function in old age.


Asunto(s)
Trastornos del Movimiento/metabolismo , Péptidos/metabolismo , Corteza Prefrontal/metabolismo , Desempeño Psicomotor , Femenino , Humanos , Masculino , Trastornos del Movimiento/etiología , Corteza Prefrontal/patología , Estudios Prospectivos
19.
Transl Psychiatry ; 11(1): 50, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33446646

RESUMEN

Microglial dysfunction has been proposed as one of the many cellular mechanisms that can contribute to the development of Alzheimer's disease (AD). Here, using a transcriptional network map of the human frontal cortex, we identify five modules of co-expressed genes related to microglia and assess their role in the neuropathologic features of AD in 540 subjects from two cohort studies of brain aging. Two of these transcriptional programs-modules 113 and 114-relate to the accumulation of ß-amyloid, while module 5 relates to tau pathology. We replicate these associations in brain epigenomic data and in two independent datasets. In terms of tau, we propose that module 5, a marker of activated microglia, may lead to tau accumulation and subsequent cognitive decline. We validate our model further by showing that three representative module 5 genes (ACADVL, TRABD, and VASP) encode proteins that are upregulated in activated microglia in AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Humanos , Microglía/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
20.
Neuron ; 109(21): 3402-3420.e9, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34473944

RESUMEN

We have generated a controlled and manipulable resource that captures genetic risk for Alzheimer's disease: iPSC lines from 53 individuals coupled with RNA and proteomic profiling of both iPSC-derived neurons and brain tissue of the same individuals. Data collected for each person include genome sequencing, longitudinal cognitive scores, and quantitative neuropathology. The utility of this resource is exemplified here by analyses of neurons derived from these lines, revealing significant associations between specific Aß and tau species and the levels of plaque and tangle deposition in the brain and, more importantly, with the trajectory of cognitive decline. Proteins and networks are identified that are associated with AD phenotypes in iPSC neurons, and relevant associations are validated in brain. The data presented establish this iPSC collection as a resource for investigating person-specific processes in the brain that can aid in identifying and validating molecular pathways underlying AD.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Anciano , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Cognición , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/metabolismo , Proteómica , Proteínas tau/genética , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA