Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 110(31): 12780-5, 2013 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-23840067

RESUMEN

Hepatic insulin resistance is a principal component of type 2 diabetes, but the cellular and molecular mechanisms responsible for its pathogenesis remain unknown. Recent studies have suggested that saturated fatty acids induce hepatic insulin resistance through activation of the toll-like receptor 4 (TLR-4) receptor in the liver, which in turn transcriptionally activates hepatic ceramide synthesis leading to inhibition of insulin signaling. In this study, we demonstrate that TLR-4 receptor signaling is not directly required for saturated or unsaturated fat-induced hepatic insulin resistance in both TLR-4 antisense oligonucleotide treated and TLR-4 knockout mice, and that ceramide accumulation is not dependent on TLR-4 signaling or a primary event in hepatic steatosis and impairment of insulin signaling. Further, we show that both saturated and unsaturated fats lead to hepatic accumulation of diacylglycerols, activation of PKCε, and impairment of insulin-stimulated IRS-2 signaling. These data demonstrate that saturated fat-induced insulin resistance is independent of TLR-4 activation and ceramides.


Asunto(s)
Grasas Insaturadas en la Dieta/farmacología , Hígado Graso/metabolismo , Resistencia a la Insulina , Hígado/metabolismo , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Diglicéridos/metabolismo , Hígado Graso/inducido químicamente , Hígado Graso/patología , Proteínas Sustrato del Receptor de Insulina/metabolismo , Hígado/patología , Ratones , Ratas , Ratas Sprague-Dawley
2.
Diabetologia ; 57(6): 1232-41, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24718953

RESUMEN

AIMS/HYPOTHESIS: Aerobic exercise increases muscle glucose and improves insulin action through numerous pathways, including activation of Ca(2+)/calmodulin-dependent protein kinases (CAMKs) and peroxisome proliferator γ coactivator 1α (PGC-1α). While overexpression of PGC-1α increases muscle mitochondrial content and oxidative type I fibres, it does not improve insulin action. Activation of CAMK4 also increases the content of type I muscle fibres, PGC-1α level and mitochondrial content. However, it remains unknown whether CAMK4 activation improves insulin action on glucose metabolism in vivo. METHODS: The effects of CAMK4 activation on skeletal muscle insulin action were quantified using transgenic mice with a truncated and constitutively active form of CAMK4 (CAMK4([Symbol: see text])) in skeletal muscle. Tissue-specific insulin sensitivity was assessed in vivo using a hyperinsulinaemic-euglycaemic clamp and isotopic measurements of glucose metabolism. RESULTS: The rate of insulin-stimulated whole-body glucose uptake was increased by ∼25% in CAMK4([Symbol: see text]) mice. This was largely attributed to an increase of ∼60% in insulin-stimulated glucose uptake in the quadriceps, the largest hindlimb muscle. These changes were associated with improvements in insulin signalling, as reflected by increased phosphorylation of Akt and its substrates and an increase in the level of GLUT4 protein. In addition, there were extramuscular effects: CAMK4([Symbol: see text]) mice had improved hepatic and adipose insulin action. These pleiotropic effects were associated with increased levels of PGC-1α-related myokines in CAMK4([Symbol: see text]) skeletal muscle. CONCLUSIONS/INTERPRETATION: Activation of CAMK4 enhances mitochondrial biogenesis in skeletal muscle while also coordinating improvements in whole-body insulin-mediated glucose.


Asunto(s)
Proteína Quinasa Tipo 4 Dependiente de Calcio Calmodulina/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Músculo Esquelético/enzimología , Animales , Proteína Quinasa Tipo 4 Dependiente de Calcio Calmodulina/genética , Femenino , Masculino , Ratones , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Factores de Transcripción/genética
3.
Am J Physiol Endocrinol Metab ; 307(9): E773-83, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25159329

RESUMEN

The steroid receptor coactivator 1 (SRC1) regulates key metabolic pathways, including glucose homeostasis. SRC1(-/-) mice have decreased hepatic expression of gluconeogenic enzymes and a reduction in the rate of endogenous glucose production (EGP). We sought to determine whether decreasing hepatic and adipose SRC1 expression in normal adult rats would alter glucose homeostasis and insulin action. Regular chow-fed and high-fat-fed male Sprage-Dawley rats were treated with an antisense oligonucleotide (ASO) against SRC1 or a control ASO for 4 wk, followed by metabolic assessments. SRC1 ASO did not alter basal EGP or expression of gluconeogenic enzymes. Instead, SRC1 ASO increased insulin-stimulated whole body glucose disposal by ~30%, which was attributable largely to an increase in insulin-stimulated muscle glucose uptake. This was associated with an approximately sevenfold increase in adipose expression of lipocalin-type prostaglandin D2 synthase, a previously reported regulator of insulin sensitivity, and an approximately 70% increase in plasma PGD2 concentration. Muscle insulin signaling, AMPK activation, and tissue perfusion were unchanged. Although GLUT4 content was unchanged, SRC1 ASO increased the cleavage of tether-containing UBX domain for GLUT4, a regulator of GLUT4 translocation. These studies point to a novel role of adipose SRC1 as a regulator of insulin-stimulated muscle glucose uptake.


Asunto(s)
Inhibidores Enzimáticos/uso terapéutico , Intolerancia a la Glucosa/tratamiento farmacológico , Resistencia a la Insulina , Músculo Esquelético/efectos de los fármacos , Coactivador 1 de Receptor Nuclear/antagonistas & inhibidores , Oligodesoxirribonucleótidos Antisentido/uso terapéutico , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/enzimología , Tejido Adiposo/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Intolerancia a la Glucosa/etiología , Intolerancia a la Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/agonistas , Transportador de Glucosa de Tipo 4/química , Transportador de Glucosa de Tipo 4/metabolismo , Péptidos y Proteínas de Señalización Intracelular/agonistas , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo , Lipocalinas/agonistas , Lipocalinas/genética , Lipocalinas/metabolismo , Hígado/efectos de los fármacos , Hígado/enzimología , Hígado/metabolismo , Masculino , Músculo Esquelético/metabolismo , Coactivador 1 de Receptor Nuclear/genética , Coactivador 1 de Receptor Nuclear/metabolismo , Fosfoenolpiruvato Carboxiquinasa (GTP)/genética , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Prostaglandina D2/sangre , Prostaglandina D2/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteolisis/efectos de los fármacos , Ratas Sprague-Dawley
4.
ACS Chem Biol ; 11(2): 363-74, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26640968

RESUMEN

Modulation of histone deacetylase (HDAC) activity has been implicated as a potential therapeutic strategy for multiple diseases. However, it has been difficult to dissect the role of individual HDACs due to a lack of selective small-molecule inhibitors. Here, we report the synthesis of a series of highly potent and isoform-selective class I HDAC inhibitors, rationally designed by exploiting minimal structural changes to the clinically experienced HDAC inhibitor CI-994. We used this toolkit of isochemogenic or chemically matched inhibitors to probe the role of class I HDACs in ß-cell pathobiology and demonstrate for the first time that selective inhibition of an individual HDAC isoform retains beneficial biological activity and mitigates mechanism-based toxicities. The highly selective HDAC3 inhibitor BRD3308 suppressed pancreatic ß-cell apoptosis induced by inflammatory cytokines, as expected, or now glucolipotoxic stress, and increased functional insulin release. In addition, BRD3308 had no effect on human megakaryocyte differentiation, while inhibitors of HDAC1 and 2 were toxic. Our findings demonstrate that the selective inhibition of HDAC3 represents a potential path forward as a therapy to protect pancreatic ß-cells from inflammatory cytokines and nutrient overload in diabetes.


Asunto(s)
Citoprotección/efectos de los fármacos , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Diseño de Fármacos , Inhibidores de Histona Desacetilasas/farmacocinética , Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , Humanos , Células Secretoras de Insulina/citología , Datos de Secuencia Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Ratas
5.
Aging (Albany NY) ; 5(10): 770-81, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24150286

RESUMEN

In the liver, insulin suppresses hepatic gluconeogenesis by activating Akt, which inactivates the key gluconeogenic transcription factor FoxO1 (Forkhead Box O1). Recent studies have implicated hyperactivity of the Akt phosphatase Protein Phosphatase 2A (PP2A) and impaired Akt signaling as a molecular defect underlying insulin resistance. We therefore hypothesized that PP2A inhibition would enhance insulin-stimulated Akt activity and decrease glucose production. PP2A inhibitors increased hepatic Akt phosphorylation and inhibited FoxO1in vitro and in vivo, and suppressed gluconeogenesis in hepatocytes. Paradoxically, PP2A inhibition exacerbated insulin resistance in vivo. This was explained by phosphorylation of both hepatic glycogen synthase (GS) (inactivation) and phosphorylase (activation) resulting in impairment of glycogen storage. Our findings underline the significance of GS and Phosphorylase as hepatic PP2A substrates and importance of glycogen metabolism in acute plasma glucose regulation.


Asunto(s)
Resistencia a la Insulina , Hígado/metabolismo , Proteína Fosfatasa 2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/fisiología , Animales , Activación Enzimática , Factores de Transcripción Forkhead/metabolismo , Gluconeogénesis , Glucógeno/biosíntesis , Masculino , Proteínas del Tejido Nervioso/metabolismo , Proteína Fosfatasa 2/fisiología , Ratas , Ratas Sprague-Dawley
6.
PLoS One ; 6(11): e27424, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22087313

RESUMEN

In type 2 Diabetes (T2D) free fatty acids (FFAs) in plasma are increased and hepatic insulin resistance is "selective", in the sense that the insulin-mediated decrease of glucose production is blunted while insulin's effect on stimulating lipogenesis is maintained. We investigated the molecular mechanisms underlying this pathogenic paradox. Primary rat hepatocytes were exposed to palmitate for twenty hours. To establish the physiological relevance of the in vitro findings, we also studied insulin-resistant Zucker Diabetic Fatty (ZDF) rats. While insulin-receptor phosphorylation was unaffected, activation of Akt and inactivation of the downstream targets Glycogen synthase kinase 3α (Gsk3α and Forkhead box O1 (FoxO1) was inhibited in palmitate-exposed cells. Accordingly, dose-response curves for insulin-mediated suppression of the FoxO1-induced gluconeogenic genes and for de novo glucose production were right shifted, and insulin-stimulated glucose oxidation and glycogen synthesis were impaired. In contrast, similar to findings in human T2D, the ability of insulin to induce triglyceride (TG) accumulation and transcription of the enzymes that catalyze de novo lipogenesis and TG assembly was unaffected. Insulin-induction of these genes could, however, be blocked by inhibition of the atypical PKCs (aPKCs). The activity of the Akt-inactivating Protein Phosphatase 2A (PP2A) was increased in the insulin-resistant cells. Furthermore, inhibition of PP2A by specific inhibitors increased insulin-stimulated activation of Akt and phosphorylation of FoxO1 and Gsk3α. Finally, PP2A mRNA levels were increased in liver, muscle and adipose tissue, while PP2A activity was increased in liver and muscle tissue in insulin-resistant ZDF rats. In conclusion, our findings indicate that FFAs may cause a selective impairment of insulin action upon hepatic glucose metabolism by increasing PP2A activity.


Asunto(s)
Ácidos Grasos no Esterificados/farmacología , Glucosa/metabolismo , Insulina/farmacología , Hígado/metabolismo , Proteína Fosfatasa 2/metabolismo , Animales , Células Cultivadas , Resistencia a la Insulina , Lipogénesis , Músculos/metabolismo , Ácido Palmítico/farmacología , Proteína Fosfatasa 2/genética , ARN Mensajero/análisis , Ratas , Ratas Zucker
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA