Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 619(7969): 311-316, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37438592

RESUMEN

Coral reefs are losing the capacity to sustain their biological functions1. In addition to other well-known stressors, such as climatic change and overfishing1, plastic pollution is an emerging threat to coral reefs, spreading throughout reef food webs2, and increasing disease transmission and structural damage to reef organisms3. Although recognized as a global concern4, the distribution and quantity of plastics trapped in the world's coral reefs remains uncertain3. Here we survey 84 shallow and deep coral ecosystems at 25 locations across the Pacific, Atlantic and Indian ocean basins for anthropogenic macrodebris (pollution by human-generated objects larger than 5 centimetres, including plastics), performing 1,231 transects. Our results show anthropogenic debris in 77 out of the 84 reefs surveyed, including in some of Earth's most remote and near-pristine reefs, such as in uninhabited central Pacific atolls. Macroplastics represent 88% of the anthropogenic debris, and, like other debris types, peak in deeper reefs (mesophotic zones at 30-150 metres depth), with fishing activities as the main source of plastics in most areas. These findings contrast with the global pattern observed in other nearshore marine ecosystems, where macroplastic densities decrease with depth and are dominated by consumer items5. As the world moves towards a global treaty to tackle plastic pollution6, understanding its distribution and drivers provides key information to help to design the strategies needed to address this ubiquitous threat.


Asunto(s)
Arrecifes de Coral , Plásticos , Plásticos/efectos adversos , Plásticos/análisis , Cadena Alimentaria , Océano Pacífico , Océano Atlántico , Océano Índico , Tamaño de la Partícula , Actividades Humanas , Caza
3.
PLoS One ; 17(8): e0273092, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35972945

RESUMEN

Hydrodynamics on coral reefs vary with depth, reef morphology and seascape position. Differences in hydrodynamic regimes strongly influence the structure and function of coral reef ecosystems. Submerged coral reefs on steep-sided, conical bathymetric features like seamounts experience enhanced water circulation as a result of interactions between currents and the abrupt physical structure. There may also be similar interactions between smaller pinnacles and regional water currents in offshore locations (crests > 10 m), while shallow reefs (crests <10 m) may be more subject to surface currents driven by wind, waves and tide. Here we tested whether coral pinnacles experienced stronger and more variable currents compared to emergent reefs at the same depth in both nearshore and offshore positions. Current speeds and temperature were monitored for 12 months at 11 reefs, representing the three different reef categories: submerged offshore pinnacles, emergent offshore reefs and emergent nearshore reefs. We found different patterns in current speeds and temperature among reef types throughout the year and between seasons. Submerged pinnacles exhibited stronger, more variable current speeds compared to both near and offshore emergent reefs. We found seasonal changes in current speeds for pinnacle and nearshore reefs but no variation in current strength on offshore reefs. Whilst instantaneous current directions did reflect the seascape position of individual sites, there was no difference in the directional variability of current speeds between reef types. Annual daily average temperatures at all reef types were not strongly seasonal, changing by less than 2 °C throughout the year. Daily temperature ranges at specific sites however, exhibited considerable variability (annual range of up to 6.5 °C), particularly amongst offshore emergent reefs which experienced the highest temperatures despite greater exposure to regional-scale circulation patterns. Additionally, we found a consistent mismatch between satellite sea surface temperatures and in-situ temperature data, which was on average 2 °C cooler throughout the annual study period. Our results suggest that distinct hydrodynamic processes occur on smaller submerged structures that are physically analogous to seamounts. Our findings highlight important nuances in environmental processes that occur on morphologically distinct coral reef habitats and these are likely to be important drivers for the community dynamics of organisms that inhabit these reefs.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Ecosistema , Hidrodinámica , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA