Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 583(7814): 96-102, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32581362

RESUMEN

Most patients with rare diseases do not receive a molecular diagnosis and the aetiological variants and causative genes for more than half such disorders remain to be discovered1. Here we used whole-genome sequencing (WGS) in a national health system to streamline diagnosis and to discover unknown aetiological variants in the coding and non-coding regions of the genome. We generated WGS data for 13,037 participants, of whom 9,802 had a rare disease, and provided a genetic diagnosis to 1,138 of the 7,065 extensively phenotyped participants. We identified 95 Mendelian associations between genes and rare diseases, of which 11 have been discovered since 2015 and at least 79 are confirmed to be aetiological. By generating WGS data of UK Biobank participants2, we found that rare alleles can explain the presence of some individuals in the tails of a quantitative trait for red blood cells. Finally, we identified four novel non-coding variants that cause disease through the disruption of transcription of ARPC1B, GATA1, LRBA and MPL. Our study demonstrates a synergy by using WGS for diagnosis and aetiological discovery in routine healthcare.


Asunto(s)
Internacionalidad , Programas Nacionales de Salud , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Secuenciación Completa del Genoma , Complejo 2-3 Proteico Relacionado con la Actina/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Alelos , Bases de Datos Factuales , Eritrocitos/metabolismo , Factor de Transcripción GATA1/genética , Humanos , Fenotipo , Sitios de Carácter Cuantitativo , Receptores de Trombopoyetina/genética , Medicina Estatal , Reino Unido
2.
Lancet ; 403(10433): 1279-1289, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38492578

RESUMEN

BACKGROUND: Individuals with rare kidney diseases account for 5-10% of people with chronic kidney disease, but constitute more than 25% of patients receiving kidney replacement therapy. The National Registry of Rare Kidney Diseases (RaDaR) gathers longitudinal data from patients with these conditions, which we used to study disease progression and outcomes of death and kidney failure. METHODS: People aged 0-96 years living with 28 types of rare kidney diseases were recruited from 108 UK renal care facilities. The primary outcomes were cumulative incidence of mortality and kidney failure in individuals with rare kidney diseases, which were calculated and compared with that of unselected patients with chronic kidney disease. Cumulative incidence and Kaplan-Meier survival estimates were calculated for the following outcomes: median age at kidney failure; median age at death; time from start of dialysis to death; and time from diagnosis to estimated glomerular filtration rate (eGFR) thresholds, allowing calculation of time from last eGFR of 75 mL/min per 1·73 m2 or more to first eGFR of less than 30 mL/min per 1·73 m2 (the therapeutic trial window). FINDINGS: Between Jan 18, 2010, and July 25, 2022, 27 285 participants were recruited to RaDaR. Median follow-up time from diagnosis was 9·6 years (IQR 5·9-16·7). RaDaR participants had significantly higher 5-year cumulative incidence of kidney failure than 2·81 million UK patients with all-cause chronic kidney disease (28% vs 1%; p<0·0001), but better survival rates (standardised mortality ratio 0·42 [95% CI 0·32-0·52]; p<0·0001). Median age at kidney failure, median age at death, time from start of dialysis to death, time from diagnosis to eGFR thresholds, and therapeutic trial window all varied substantially between rare diseases. INTERPRETATION: Patients with rare kidney diseases differ from the general population of individuals with chronic kidney disease: they have higher 5-year rates of kidney failure but higher survival than other patients with chronic kidney disease stages 3-5, and so are over-represented in the cohort of patients requiring kidney replacement therapy. Addressing unmet therapeutic need for patients with rare kidney diseases could have a large beneficial effect on long-term kidney replacement therapy demand. FUNDING: RaDaR is funded by the Medical Research Council, Kidney Research UK, Kidney Care UK, and the Polycystic Kidney Disease Charity.


Asunto(s)
Fallo Renal Crónico , Insuficiencia Renal Crónica , Insuficiencia Renal , Humanos , Tasa de Filtración Glomerular , Riñón , Fallo Renal Crónico/epidemiología , Fallo Renal Crónico/terapia , Fallo Renal Crónico/etiología , Radar , Enfermedades Raras , Sistema de Registros , Insuficiencia Renal/epidemiología , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/terapia , Insuficiencia Renal Crónica/complicaciones , Reino Unido/epidemiología , Recién Nacido , Lactante , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años
3.
Proc Natl Acad Sci U S A ; 119(52): e2209960119, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36538479

RESUMEN

Sensorimotor learning is a dynamic, systems-level process that involves the combined action of multiple neural systems distributed across the brain. Although much is known about the specialized cortical systems that support specific components of action (such as reaching), we know less about how cortical systems function in a coordinated manner to facilitate adaptive behavior. To address this gap, our study measured human brain activity using functional MRI (fMRI) while participants performed a classic sensorimotor adaptation task and used a manifold learning approach to describe how behavioral changes during adaptation relate to changes in the landscape of cortical activity. During early adaptation, areas in the parietal and premotor cortices exhibited significant contraction along the cortical manifold, which was associated with their increased covariance with regions in the higher-order association cortex, including both the default mode and fronto-parietal networks. By contrast, during Late adaptation, when visuomotor errors had been largely reduced, a significant expansion of the visual cortex along the cortical manifold was associated with its reduced covariance with the association cortex and its increased intraconnectivity. Lastly, individuals who learned more rapidly exhibited greater covariance between regions in the sensorimotor and association cortices during early adaptation. These findings are consistent with a view that sensorimotor adaptation depends on changes in the integration and segregation of neural activity across more specialized regions of the unimodal cortex with regions in the association cortex implicated in higher-order processes. More generally, they lend support to an emerging line of evidence implicating regions of the default mode network (DMN) in task-based performance.


Asunto(s)
Mapeo Encefálico , Corteza Motora , Humanos , Encéfalo , Corteza Motora/diagnóstico por imagen , Imagen por Resonancia Magnética , Aprendizaje
4.
Kidney Int ; 105(4): 791-798, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38367960

RESUMEN

Class 2 HLA and PLA2R1 alleles are exceptionally strong genetic risk factors for membranous nephropathy (MN), leading, through an unknown mechanism, to a targeted autoimmune response. Introgressed archaic haplotypes (introduced from an archaic human genome into the modern human genome) might influence phenotypes through gene dysregulation. Here, we investigated the genomic region surrounding the PLA2R1 gene. We reconstructed the phylogeny of Neanderthal and modern haplotypes in this region and calculated the probability of the observed clustering being the result of introgression or common descent. We imputed variants for the participants in our previous genome-wide association study and we compared the distribution of Neanderthal variants between MN cases and controls. The region associated with the lead MN risk locus in the PLA2R1 gene was confirmed and showed that, within a 507 kb region enriched in introgressed sequence, a stringently defined 105 kb haplotype, intersecting the coding regions for PLA2R1 and ITGB6, is inherited from Neanderthals. Thus, introgressed Neanderthal haplotypes overlapping PLA2R1 are differentially represented in MN cases and controls, with enrichment In controls suggesting a protective effect.


Asunto(s)
Glomerulonefritis Membranosa , Hombre de Neandertal , Humanos , Animales , Hombre de Neandertal/genética , Haplotipos , Glomerulonefritis Membranosa/genética , Genoma Humano , Estudio de Asociación del Genoma Completo , Receptores de Fosfolipasa A2/genética
5.
Kidney Int ; 106(3): 369-391, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38844295

RESUMEN

Uncontrolled complement activation can cause or contribute to glomerular injury in multiple kidney diseases. Although complement activation plays a causal role in atypical hemolytic uremic syndrome and C3 glomerulopathy, over the past decade, a rapidly accumulating body of evidence has shown a role for complement activation in multiple other kidney diseases, including diabetic nephropathy and several glomerulonephritides. The number of available complement inhibitor therapies has also increased during the same period. In 2022, Kidney Diseases: Improving Global Outcomes (KDIGO) convened a Controversies Conference, "The Role of Complement in Kidney Disease," to address the expanding role of complement dysregulation in the pathophysiology, diagnosis, and management of various glomerular diseases, diabetic nephropathy, and other forms of hemolytic uremic syndrome. Conference participants reviewed the evidence for complement playing a primary causal or secondary role in progression for several disease states and considered how evidence of complement involvement might inform management. Participating patients with various complement-mediated diseases and caregivers described concerns related to life planning, implications surrounding genetic testing, and the need for inclusive implementation of effective novel therapies into clinical practice. The value of biomarkers in monitoring disease course and the role of the glomerular microenvironment in complement response were examined, and key gaps in knowledge and research priorities were identified.


Asunto(s)
Activación de Complemento , Enfermedades Renales , Humanos , Biomarcadores/sangre , Activación de Complemento/inmunología , Inactivadores del Complemento/uso terapéutico , Proteínas del Sistema Complemento/inmunología , Proteínas del Sistema Complemento/metabolismo , Congresos como Asunto , Progresión de la Enfermedad , Enfermedades Renales/inmunología , Enfermedades Renales/terapia , Enfermedades Renales/diagnóstico , Glomérulos Renales/inmunología , Glomérulos Renales/patología
6.
Cereb Cortex ; 33(8): 4761-4778, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36245212

RESUMEN

Humans vary greatly in their motor learning abilities, yet little is known about the neural processes that underlie this variability. We identified distinct profiles of human sensorimotor adaptation that emerged across 2 days of learning, linking these profiles to the dynamics of whole-brain functional networks early on the first day when cognitive strategies toward sensorimotor adaptation are believed to be most prominent. During early learning, greater recruitment of a network of higher-order brain regions, involving prefrontal and anterior temporal cortex, was associated with faster learning. At the same time, greater integration of this "cognitive network" with a sensorimotor network was associated with slower learning, consistent with the notion that cognitive strategies toward adaptation operate in parallel with implicit learning processes of the sensorimotor system. On the second day, greater recruitment of a network that included the hippocampus was associated with faster learning, consistent with the notion that declarative memory systems are involved with fast relearning of sensorimotor mappings. Together, these findings provide novel evidence for the role of higher-order brain systems in driving variability in adaptation.


Asunto(s)
Encéfalo , Aprendizaje , Humanos , Adaptación Fisiológica , Lóbulo Temporal , Hipocampo
7.
Kidney Int ; 104(5): 975-984, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37414395

RESUMEN

Urinary stone disease (USD) is a major health burden affecting over 10% of the United Kingdom population. While stone disease is associated with lifestyle, genetic factors also strongly contribute. Common genetic variants at multiple loci from genome-wide association studies account for 5% of the estimated 45% heritability of the disorder. Here, we investigated the extent to which rare genetic variation contributes to the unexplained heritability of USD. Among participants of the United Kingdom 100,000-genome project, 374 unrelated individuals were identified and assigned diagnostic codes indicative of USD. Whole genome gene-based rare variant testing and polygenic risk scoring against a control population of 24,930 ancestry-matched controls was performed. We observed (and replicated in an independent dataset) exome-wide significant enrichment of monoallelic rare, predicted damaging variants in the SLC34A3 gene for a sodium-dependent phosphate transporter that were present in 5% cases compared with 1.6% of controls. This gene was previously associated with autosomal recessive disease. The effect on USD risk of having a qualifying SLC34A3 variant was greater than that of a standard deviation increase in polygenic risk derived from GWAS. Addition of the rare qualifying variants in SLC34A3 to a linear model including polygenic score increased the liability-adjusted heritability from 5.1% to 14.2% in the discovery cohort. We conclude that rare variants in SLC34A3 represent an important genetic risk factor for USD, with effect size intermediate between the fully penetrant rare variants linked with Mendelian disorders and common variants associated with USD. Thus, our findings explain some of the heritability unexplained by prior common variant genome-wide association studies.


Asunto(s)
Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIc , Cálculos Urinarios , Urolitiasis , Enfermedades Urológicas , Humanos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Sodio , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIc/genética , Cálculos Urinarios/genética , Urolitiasis/genética
8.
Ann Hum Genet ; 87(1-2): 1-8, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36214424

RESUMEN

BACKGROUND: Immunoglobulin A (IgA) nephropathy is a disorder of the immune system affecting kidney function, and genome-wide association studies (GWAS) have defined numerous loci with associated variation, all implicating components of innate or adaptive immunity. Among these, single nucleotide polymorphisms (SNPs) in a region including the multiallelic copy number variation (CNV) of DEFA1A3 are associated with IgA nephropathy in both European and Asian populations. At present, the precise factors underlying the observed associations at DEFA1A3 have not been defined, although the key alleles differ between Asian and European populations, and multiple independent factors may be involved even within a single population. METHODS: In this study, we measured DEFA1A3 copy number in UK family trios with an offspring affected by IgA nephropathy, used the population distributions of joint SNP-CNV haplotypes to infer the likely segregation in trios, and applied transmission disequilibrium tests (TDT) to examine joint SNP-CNV haplotypes for over- or undertransmission into affected offspring from heterozygous parents. RESULTS AND CONCLUSIONS: We observed overtransmission of 3-copy class 2 haplotypes (raw p = 0.029) and some evidence for under-transmission of 3-copy class 1 haplotypes (raw p = 0.051), although these apparent effects were not statistically significant after correction for testing of multiple haplotypes.


Asunto(s)
Glomerulonefritis por IGA , alfa-Defensinas , Humanos , Haplotipos , Variaciones en el Número de Copia de ADN , Polimorfismo de Nucleótido Simple , alfa-Defensinas/genética , Estudio de Asociación del Genoma Completo , Glomerulonefritis por IGA/genética , Susceptibilidad a Enfermedades , Predisposición Genética a la Enfermedad , Péptidos Cíclicos/genética
9.
Pediatr Nephrol ; 38(6): 1793-1800, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36357634

RESUMEN

BACKGROUND: Idiop athic nephrotic syndrome (INS) is classified in children according to response to initial corticosteroid therapy into steroid-sensitive (SSNS) and steroid-resistant nephrotic syndrome (SRNS), and in adults according to histology into minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS). However, there is well-recognised phenotypic overlap between these entities. Genome-wide association studies (GWAS) have shown a strong association between SSNS and variation at HLA, suggesting an underlying immunological basis. We sought to determine whether a risk score generated from genetic variants associated with SSNS could be used to gain insight into the pathophysiology of INS presenting in other ways. METHODS: We developed an SSNS genetic risk score (SSNS-GRS) from the five variants independently associated with childhood SSNS in a previous European GWAS. We quantified SSNS-GRS in independent cohorts of European individuals with childhood SSNS, non-monogenic SRNS, MCD, and FSGS, and contrasted them with SSNS-GRS quantified in individuals with monogenic SRNS, membranous nephropathy (a different immune-mediated disease-causing nephrotic syndrome), and healthy controls. RESULTS: The SSNS-GRS was significantly elevated in cohorts with SSNS, non-monogenic SRNS, MCD, and FSGS compared to healthy participants and those with membranous nephropathy. The SSNS-GRS in all cohorts with non-monogenic INS were also significantly elevated compared to those with monogenic SRNS. CONCLUSIONS: The shared genetic risk factors among patients with different presentations of INS strongly suggests a shared autoimmune pathogenesis when monogenic causes are excluded. Use of the SSNS-GRS, in addition to testing for monogenic causes, may help to classify patients presenting with INS. A higher resolution version of the Graphical abstract is available as Supplementary information.


Asunto(s)
Glomerulonefritis Membranosa , Glomeruloesclerosis Focal y Segmentaria , Nefrosis Lipoidea , Síndrome Nefrótico , Niño , Humanos , Síndrome Nefrótico/diagnóstico , Síndrome Nefrótico/tratamiento farmacológico , Síndrome Nefrótico/genética , Nefrosis Lipoidea/diagnóstico , Nefrosis Lipoidea/tratamiento farmacológico , Nefrosis Lipoidea/genética , Glomeruloesclerosis Focal y Segmentaria/diagnóstico , Glomeruloesclerosis Focal y Segmentaria/tratamiento farmacológico , Glomeruloesclerosis Focal y Segmentaria/genética , Estudio de Asociación del Genoma Completo , Esteroides , Factores de Riesgo
10.
J Neurosci ; 2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34035139

RESUMEN

Recent data and motor control theory argues that movement planning involves preparing the neural state of primary motor cortex (M1) for forthcoming action execution. Theories related to internal models, feedback control, and predictive coding also emphasize the importance of sensory prediction (and processing) prior to (and during) the movement itself, explaining why motor-related deficits can arise from damage to primary somatosensory cortex (S1). Motivated by this work, here we examined whether motor planning, in addition to changing the neural state of M1, changes the neural state of S1, preparing it for the sensory feedback that arises during action. We tested this idea in two human functional MRI studies (N=31, 16 female) involving delayed object manipulation tasks, focusing our analysis on pre-movement activity patterns in M1 and S1. We found that the motor effector to be used in the upcoming action could be decoded, well before movement, from neural activity in M1 in both studies. Critically, we found that this effector information was also present, well before movement, in S1. In particular, we found that the encoding of effector information in area 3b (S1 proper) was linked to the contralateral hand, similarly to that found in M1, whereas in areas 1 and 2 this encoding was present in both the contralateral and ipsilateral hemispheres. Together, these findings suggest that motor planning not only prepares the motor system for movement, but also changes the neural state of the somatosensory system, presumably allowing it to anticipate the sensory information received during movement.SIGNIFICANCE STATEMENT:Whereas recent work on motor cortex has emphasized the critical role of movement planning in preparing neural activity for movement generation, it has not investigated the extent to which planning also modulates the activity in adjacent primary somatosensory cortex (S1). This reflects a key gap in knowledge, given that recent motor control theories emphasize the importance of sensory feedback processing in effective movement generation. Here we find, through a convergence of experiments and analyses, that the planning of object manipulation tasks, in addition to modulating the activity in motor cortex, changes the state of neural activity in different subfields of human S1. We suggest that this modulation prepares S1 for the sensory information it will receive during action execution.

11.
Ann Hum Genet ; 86(3): 145-152, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34888854

RESUMEN

Alport syndrome is a genetic disorder affecting the basement membranes of the kidney, ear and eye, and represents a leading cause of monogenic kidney disease. Alport syndrome is genetically heterogeneous with three key genes involved (COL4A3-5) and several transmission patterns, including monogenic X-linked, autosomal recessive/dominant and digenic. We report a consanguineous family where 13 individuals presented variable features of Alport syndrome including kidney failure on two generations and male-to-male transmission, suggesting autosomal dominant inheritance. COL4A3-5 gene panel analysis surprisingly reveals two distinct, confirmed splice-altering variants in COL4A3 (NM_000091.4: c.1150+5G>A and c.4028-3C>T) present in homozygous or compound heterozygous state in individuals with kidney failure. This adds a further mode of transmission for Alport syndrome where, in a consanguineous family, the independent segregation of two variants at the same locus may create a pseudodominant transmission pattern. These findings highlight the importance of a molecular diagnosis in Alport syndrome for genetic risk counselling, given the variable modes of inheritance, but also the pitfalls of assuming identity by descent in consanguineous families.


Asunto(s)
Colágeno Tipo IV , Nefritis Hereditaria , Insuficiencia Renal , Autoantígenos/genética , Colágeno Tipo IV/genética , Humanos , Masculino , Mutación , Nefritis Hereditaria/diagnóstico , Nefritis Hereditaria/genética , Nefritis Hereditaria/patología , Linaje
12.
Genet Med ; 24(1): 61-74, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34906473

RESUMEN

PURPOSE: The purpose of this study was to assess decisions, attitudes, and understanding of participants (patients, parents, relatives) having genome sequencing for rare disease diagnosis. METHODS: This study involved a cross-sectional observational survey with participants in the 100,000 Genomes Project. RESULTS: Survey response rate was 51% (504/978). Most participants self-reported that they had decided to undergo genome sequencing (94%) and that this was an informed decision (84%) with low decisional conflict (95%). Most self-reported that they had chosen to receive additional findings (88%) and that this was an informed decision (89%) with low decisional conflict (95%). Participants were motivated more by the desire to help others via research than by the belief it would help them obtain a diagnosis (Z = 14.23, P = 5.75 × 10-46), although both motivations were high. Concerns were relatively few but, where expressed, were more about the potential psychological impact of results than data sharing/access (Z = 9.61, P = 7.65 × 10-22). Concerns were higher among male, Asian or Asian British, and more religious participants. General and context-specific understanding of genome sequencing were both moderately high (means 5.2/9.0 and 22.5/28.0, respectively). CONCLUSION: These findings are useful to inform consent guidelines and clinical implementation of genome sequencing.


Asunto(s)
Actitud , Padres , Estudios Transversales , Toma de Decisiones , Humanos , Masculino , Motivación , Padres/psicología , Encuestas y Cuestionarios
13.
Haematologica ; 107(3): 574-582, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33596643

RESUMEN

Immune thrombotic thrombocytopenic purpura (iTTP) is an ultra-rare, life-threatening disorder, mediated through severe ADAMTS13 deficiency causing multi-system micro-thrombi formation, and has specific human leukocyte antigen associations. We undertook a large genome-wide association study to investigate additional genetically distinct associations in iTTP. We compared two iTTP patient cohorts with controls, following standardized genome-wide quality control procedures for single-nucleotide polymorphisms and imputed HLA types. Associations were functionally investigated using expression quantitative trait loci (eQTL), and motif binding prediction software. Independent associations consistent with previous findings in iTTP were detected at the HLA locus and in addition a novel association was detected on chromosome 3 (rs9884090, P=5.22x10-10, odds ratio 0.40) in the UK discovery cohort. Meta-analysis, including the French replication cohort, strengthened the associations. The haploblock containing rs9884090 is associated with reduced protein O-glycosyltransferase 1 (POGLUT1) expression (eQTL P<0.05), and functional annotation suggested a potential causative variant (rs71767581). This work implicates POGLUT1 in iTTP pathophysiology and suggests altered post-translational modification of its targets may influence disease susceptibility.


Asunto(s)
Púrpura Trombocitopénica Idiopática , Púrpura Trombocitopénica Trombótica , Proteína ADAMTS13/genética , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Glucosiltransferasas/genética , Humanos , Púrpura Trombocitopénica Idiopática/genética , Púrpura Trombocitopénica Trombótica/genética
14.
Cereb Cortex ; 31(6): 2952-2967, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33511976

RESUMEN

It is well established that movement planning recruits motor-related cortical brain areas in preparation for the forthcoming action. Given that an integral component to the control of action is the processing of sensory information throughout movement, we predicted that movement planning might also modulate early sensory cortical areas, readying them for sensory processing during the unfolding action. To test this hypothesis, we performed 2 human functional magnetic resonance imaging studies involving separate delayed movement tasks and focused on premovement neural activity in early auditory cortex, given the area's direct connections to the motor system and evidence that it is modulated by motor cortex during movement in rodents. We show that effector-specific information (i.e., movements of the left vs. right hand in Experiment 1 and movements of the hand vs. eye in Experiment 2) can be decoded, well before movement, from neural activity in early auditory cortex. We find that this motor-related information is encoded in a separate subregion of auditory cortex than sensory-related information and is present even when movements are cued visually instead of auditorily. These findings suggest that action planning, in addition to preparing the motor system for movement, involves selectively modulating primary sensory areas based on the intended action.


Asunto(s)
Estimulación Acústica/métodos , Anticipación Psicológica/fisiología , Corteza Auditiva/diagnóstico por imagen , Corteza Auditiva/fisiología , Movimiento/fisiología , Desempeño Psicomotor/fisiología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Adulto Joven
15.
J Am Soc Nephrol ; 32(9): 2273-2290, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34400539

RESUMEN

BACKGROUND: The reported prevalence of Alport syndrome varies from one in 5000 to one in 53,000 individuals. This study estimated the frequencies of predicted pathogenic COL4A3-COL4A5 variants in sequencing databases of populations without known kidney disease. METHODS: Predicted pathogenic variants were identified using filtering steps based on the ACMG/AMP criteria, which considered collagen IV α3-α5 position 1 Gly to be critical domains. The population frequencies of predicted pathogenic COL4A3-COL4A5 variants were then determined per mean number of sequenced alleles. Population frequencies for compound heterozygous and digenic combinations were calculated from the results for heterozygous variants. RESULTS: COL4A3-COL4A5 variants resulting in position 1 Gly substitutions were confirmed to be associated with hematuria (for each, P<0.001). Predicted pathogenic COL4A5 variants were found in at least one in 2320 individuals. p.(Gly624Asp) represented nearly half (16 of 33, 48%) of the variants in Europeans. Most COL4A5 variants (54 of 59, 92%) had a biochemical feature that potentially mitigated the clinical effect. The predicted pathogenic heterozygous COL4A3 and COL4A4 variants affected one in 106 of the population, consistent with the finding of thin basement membrane nephropathy in normal donor kidney biopsy specimens. Predicted pathogenic compound heterozygous variants occurred in one in 88,866 individuals, and digenic variants in at least one in 44,793. CONCLUSIONS: The population frequencies for Alport syndrome are suggested by the frequencies of predicted pathogenic COL4A3-COL4A5 variants, but must be adjusted for the disease penetrance of individual variants and for the likelihood of already diagnosed disease and non-Gly substitutions. Disease penetrance may depend on other genetic and environmental factors.


Asunto(s)
Autoantígenos/genética , Colágeno Tipo IV/genética , Mutación/genética , Nefritis Hereditaria/epidemiología , Nefritis Hereditaria/genética , Bases de Datos Genéticas , Femenino , Humanos , Masculino , Nefritis Hereditaria/diagnóstico , Penetrancia , Prevalencia
16.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35055171

RESUMEN

Peroxisomal fatty acid α-oxidation is an essential pathway for the degradation of ß-carbon methylated fatty acids such as phytanic acid. One enzyme in this pathway is 2-hydroxyacyl CoA lyase (HACL1), which is responsible for the cleavage of 2-hydroxyphytanoyl-CoA into pristanal and formyl-CoA. Hacl1 deficient mice do not present with a severe phenotype, unlike mice deficient in other α-oxidation enzymes such as phytanoyl-CoA hydroxylase deficiency (Refsum disease) in which neuropathy and ataxia are present. Tissues from wild-type and Hacl1-/- mice fed a high phytol diet were obtained for proteomic and lipidomic analysis. There was no phenotype observed in these mice. Liver, brain, and kidney tissues underwent trypsin digestion for untargeted proteomic liquid chromatography-mass spectrometry analysis, while liver tissues also underwent fatty acid hydrolysis, extraction, and derivatisation for fatty acid gas chromatography-mass spectrometry analysis. The liver fatty acid profile demonstrated an accumulation of phytanic and 2-hydroxyphytanic acid in the Hacl1-/- liver and significant decrease in heptadecanoic acid. The liver proteome showed a significant decrease in the abundance of Hacl1 and a significant increase in the abundance of proteins involved in PPAR signalling, peroxisome proliferation, and omega oxidation, particularly Cyp4a10 and Cyp4a14. In addition, the pathway associated with arachidonic acid metabolism was affected; Cyp2c55 was upregulated and Cyp4f14 and Cyp2b9 were downregulated. The kidney proteome revealed fewer significantly upregulated peroxisomal proteins and the brain proteome was not significantly different in Hacl1-/- mice. This study demonstrates the powerful insight brought by proteomic and metabolomic profiling of Hacl1-/- mice in better understanding disease mechanism in fatty acid α-oxidation disorders.


Asunto(s)
Liasas de Carbono-Carbono/genética , Lipidómica/métodos , Peroxisomas/metabolismo , Fitol/administración & dosificación , Proteómica/métodos , Animales , Encéfalo/metabolismo , Familia 2 del Citocromo P450/metabolismo , Familia 4 del Citocromo P450/metabolismo , Ácidos Grasos/metabolismo , Femenino , Técnicas de Inactivación de Genes , Riñón/metabolismo , Hígado/metabolismo , Masculino , Ratones , Oxidación-Reducción , Ácido Fitánico/análogos & derivados , Ácido Fitánico/metabolismo , Fitol/farmacología
17.
J Biol Chem ; 295(48): 16342-16358, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-32928961

RESUMEN

The human complement Factor H-related 5 protein (FHR5) antagonizes the main circulating complement regulator Factor H, resulting in the deregulation of complement activation. FHR5 normally contains nine short complement regulator (SCR) domains, but a FHR5 mutant has been identified with a duplicated N-terminal SCR-1/2 domain pair that causes CFHR5 nephropathy. To understand how this duplication causes disease, we characterized the solution structure of native FHR5 by analytical ultracentrifugation and small-angle X-ray scattering. Sedimentation velocity and X-ray scattering indicated that FHR5 was dimeric, with a radius of gyration (Rg ) of 5.5 ± 0.2 nm and a maximum protein length of 20 nm for its 18 domains. This result indicated that FHR5 was even more compact than the main regulator Factor H, which showed an overall length of 26-29 nm for its 20 SCR domains. Atomistic modeling for FHR5 generated a library of 250,000 physically realistic trial arrangements of SCR domains for scattering curve fits. Only compact domain structures in this library fit well to the scattering data, and these structures readily accommodated the extra SCR-1/2 domain pair present in CFHR5 nephropathy. This model indicated that mutant FHR5 can form oligomers that possess additional binding sites for C3b in FHR5. We conclude that the deregulation of complement regulation by the FHR5 mutant can be rationalized by the enhanced binding of FHR5 oligomers to C3b deposited on host cell surfaces. Our FHR5 structures thus explained key features of the mechanism and pathology of CFHR5 nephropathy.


Asunto(s)
Proteínas del Sistema Complemento/química , Enfermedades Renales , Mutación , Multimerización de Proteína , Complemento C3b/química , Complemento C3b/genética , Complemento C3b/metabolismo , Proteínas del Sistema Complemento/genética , Proteínas del Sistema Complemento/metabolismo , Células HEK293 , Humanos , Dominios Proteicos
18.
PLoS Comput Biol ; 16(2): e1007632, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32109940

RESUMEN

It is well-established that people can factor into account the distribution of their errors in motor performance so as to optimize reward. Here we asked whether, in the context of motor learning where errors decrease across trials, people take into account their future, improved performance so as to make optimal decisions to maximize reward. One group of participants performed a virtual throwing task in which, periodically, they were given the opportunity to select from a set of smaller targets of increasing value. A second group of participants performed a reaching task under a visuomotor rotation in which, after performing a initial set of trials, they selected a reward structure (ratio of points for target hits and misses) for different exploitation horizons (i.e., numbers of trials they might be asked to perform). Because movement errors decreased exponentially across trials in both learning tasks, optimal target selection (task 1) and optimal reward structure selection (task 2) required taking into account future performance. The results from both tasks indicate that people anticipate their future motor performance so as to make decisions that will improve their expected future reward.


Asunto(s)
Toma de Decisiones , Aprendizaje , Destreza Motora , Desempeño Psicomotor , Adolescente , Adulto , Femenino , Humanos , Masculino , Modelos Estadísticos , Movimiento , Tiempo de Reacción , Reproducibilidad de los Resultados , Recompensa , Rotación , Estrés Mecánico , Adulto Joven
19.
Pediatr Nephrol ; 36(8): 2165-2175, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33084934

RESUMEN

Steroid-sensitive nephrotic syndrome (SSNS) is the most common form of nephrotic syndrome in childhood and there is growing evidence that genetics play a role in the susceptibility for the disease. Familial clustering has been observed and has led to several studies on familial SSNS trying to identify a monogenic cause of the disease. Until now, however, none of these have provided convincing evidence for Mendelian inheritance. This and the phenotypic variability within SSNS suggest a complex inheritance pattern, where multiple variants and interactions between those and the environment play roles in disease development. Genome-wide association studies (GWASs) have been used to investigate this complex disease. We herein highlight new insights in the genetics of the disease provided by GWAS and identify how these insights fit into our understanding of the pathogenesis of SSNS.


Asunto(s)
Síndrome Nefrótico , Estudio de Asociación del Genoma Completo , Humanos , Síndrome Nefrótico/tratamiento farmacológico , Síndrome Nefrótico/genética , Esteroides/uso terapéutico
20.
J Am Soc Nephrol ; 31(2): 365-373, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31919107

RESUMEN

BACKGROUND: Primary membranoproliferative GN, including complement 3 (C3) glomerulopathy, is a rare, untreatable kidney disease characterized by glomerular complement deposition. Complement gene mutations can cause familial C3 glomerulopathy, and studies have reported rare variants in complement genes in nonfamilial primary membranoproliferative GN. METHODS: We analyzed whole-genome sequence data from 165 primary membranoproliferative GN cases and 10,250 individuals without the condition (controls) as part of the National Institutes of Health Research BioResource-Rare Diseases Study. We examined copy number, rare, and common variants. RESULTS: Our analysis included 146 primary membranoproliferative GN cases and 6442 controls who were unrelated and of European ancestry. We observed no significant enrichment of rare variants in candidate genes (genes encoding components of the complement alternative pathway and other genes associated with the related disease atypical hemolytic uremic syndrome; 6.8% in cases versus 5.9% in controls) or exome-wide. However, a significant common variant locus was identified at 6p21.32 (rs35406322) (P=3.29×10-8; odds ratio [OR], 1.93; 95% confidence interval [95% CI], 1.53 to 2.44), overlapping the HLA locus. Imputation of HLA types mapped this signal to a haplotype incorporating DQA1*05:01, DQB1*02:01, and DRB1*03:01 (P=1.21×10-8; OR, 2.19; 95% CI, 1.66 to 2.89). This finding was replicated by analysis of HLA serotypes in 338 individuals with membranoproliferative GN and 15,614 individuals with nonimmune renal failure. CONCLUSIONS: We found that HLA type, but not rare complement gene variation, is associated with primary membranoproliferative GN. These findings challenge the paradigm of complement gene mutations typically causing primary membranoproliferative GN and implicate an underlying autoimmune mechanism in most cases.


Asunto(s)
Complemento C3/inmunología , Glomerulonefritis Membranoproliferativa/genética , Secuenciación Completa del Genoma , Factor Nefrítico del Complemento 3/análisis , Femenino , Glomerulonefritis Membranoproliferativa/etiología , Antígenos HLA-DQ/genética , Antígenos HLA-DR/genética , Humanos , Masculino , Serogrupo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA