Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 606(7912): 41-48, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35614214

RESUMEN

An important goal of modern condensed-matter physics involves the search for states of matter with emergent properties and desirable functionalities. Although the tools for material design remain relatively limited, notable advances have been recently achieved by controlling interactions at heterointerfaces, precise alignment of low-dimensional materials and the use of extreme pressures. Here we highlight a paradigm based on controlling light-matter interactions, which provides a way to manipulate and synthesize strongly correlated quantum matter. We consider the case in which both electron-electron and electron-photon interactions are strong and give rise to a variety of phenomena. Photon-mediated superconductivity, cavity fractional quantum Hall physics and optically driven topological phenomena in low dimensions are among the frontiers discussed in this Perspective, which highlights a field that we term here 'strongly correlated electron-photon science'.

2.
Nature ; 570(7761): 344-348, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31217601

RESUMEN

In 1928, Dirac proposed a wave equation to describe relativistic electrons1. Shortly afterwards, Klein solved a simple potential step problem for the Dirac equation and encountered an apparent paradox: the potential barrier becomes transparent when its height is larger than the electron energy. For massless particles, backscattering is completely forbidden in Klein tunnelling, leading to perfect transmission through any potential barrier2,3. The recent advent of condensed-matter systems with Dirac-like excitations, such as graphene and topological insulators, has opened up the possibility of observing Klein tunnelling experimentally4-6. In the surface states of topological insulators, fermions are bound by spin-momentum locking and are thus immune from backscattering, which is prohibited by time-reversal symmetry. Here we report the observation of perfect Andreev reflection in point-contact spectroscopy-a clear signature of Klein tunnelling and a manifestation of the underlying 'relativistic' physics of a proximity-induced superconducting state in a topological Kondo insulator. Our findings shed light on a previously overlooked aspect of topological superconductivity and can serve as the basis for a unique family of spintronic and superconducting devices, the interface transport phenomena of which are completely governed by their helical topological states.

3.
Phys Rev Lett ; 132(4): 040402, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38335350

RESUMEN

Quantum speed limits such as the Mandelstam-Tamm or Margolus-Levitin bounds offer a quantitative formulation of the energy-time uncertainty principle that constrains dynamics over short times. We show that the spectral form factor, a central quantity in quantum chaos, sets a universal state-independent bound on the quantum dynamics of a complete set of initial states over arbitrarily long times, which is tighter than the corresponding state-independent bounds set by known speed limits. This bound further generalizes naturally to the real-time dynamics of time-dependent or dissipative systems where no energy spectrum exists. We use this result to constrain the scrambling of information in interacting many-body systems. For Hamiltonian systems, we show that the fundamental question of the fastest possible scrambling time-without any restrictions on the structure of interactions-maps to a purely mathematical property of the density of states involving the non-negativity of Fourier transforms. We illustrate these bounds in the Sachdev-Ye-Kitaev model, where we show that despite its "maximally chaotic" nature, the sustained scrambling of sufficiently large fermion subsystems via entanglement generation requires an exponentially long time in the subsystem size.

4.
Phys Rev Lett ; 129(23): 237002, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36563226

RESUMEN

We study the electrodynamics of spin triplet superconductors including dipolar interactions, which give rise to an interplay between the collective spin dynamics of the condensate and orbital Meissner screening currents. Within this theory, we identify a class of spin waves that originate from the coupled dynamics of the spin-symmetry breaking triplet order parameter and the electromagnetic field. In particular, we study magnetostatic spin wave modes that are localized to the sample surface. We show that these surface modes can be excited and detected using experimental techniques such as microwave spin wave resonance spectroscopy or nitrogen-vacancy magnetometry, and propose that the detection of these modes offers a means for the identification of spin triplet superconductivity.

5.
Entropy (Basel) ; 24(6)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35741543

RESUMEN

Quantum circuits have been widely used as a platform to simulate generic quantum many-body systems. In particular, random quantum circuits provide a means to probe universal features of many-body quantum chaos and ergodicity. Some such features have already been experimentally demonstrated in noisy intermediate-scale quantum (NISQ) devices. On the theory side, properties of random quantum circuits have been studied on a case-by-case basis and for certain specific systems, and a hallmark of quantum chaos-universal Wigner-Dyson level statistics-has been derived. This work develops an effective field theory for a large class of random quantum circuits. The theory has the form of a replica sigma model and is similar to the low-energy approach to diffusion in disordered systems. The method is used to explicitly derive the universal random matrix behavior of a large family of random circuits. In particular, we rederive the Wigner-Dyson spectral statistics of the brickwork circuit model by Chan, De Luca, and Chalker [Phys. Rev. X 8, 041019 (2018)] and show within the same calculation that its various permutations and higher-dimensional generalizations preserve the universal level statistics. Finally, we use the replica sigma model framework to rederive the Weingarten calculus, which is a method of evaluating integrals of polynomials of matrix elements with respect to the Haar measure over compact groups and has many applications in the study of quantum circuits. The effective field theory derived here provides both a method to quantitatively characterize the quantum dynamics of random Floquet systems (e.g., calculating operator and entanglement spreading) and a path to understanding the general fundamental mechanism behind quantum chaos and thermalization in these systems.

6.
Phys Rev Lett ; 126(18): 185303, 2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34018774

RESUMEN

The chiral anomaly is a fundamental quantum mechanical phenomenon which is of great importance to both particle physics and condensed matter physics alike. In the context of QED, it manifests as the breaking of chiral symmetry in the presence of electromagnetic fields. It is also known that anomalous chiral symmetry breaking can occur through interactions alone, as is the case for interacting one-dimensional systems. In this Letter, we investigate the interplay between these two modes of anomalous chiral symmetry breaking in the context of interacting Weyl semimetals. Using Fujikawa's path integral method, we show that the chiral charge continuity equation is modified by the presence of interactions which can be viewed as including the effect of the electric and magnetic fields generated by the interacting quantum matter. This can be understood further using dimensional reduction and a Luttinger liquid description of the lowest Landau level. These effects manifest themselves in the nonlinear response of the system. In particular, we find an interaction-dependent density response due to a change in the magnetic field as well as a contribution to the nonequilibrium and inhomogeneous anomalous Hall response while preserving its equilibrium value.

7.
Phys Rev Lett ; 125(25): 250601, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33416379

RESUMEN

We consider a noninteracting many-fermion system populating levels of a unitary random matrix ensemble (equivalent to the q=2 complex Sachdev-Ye-Kitaev model)-a generic model of single-particle quantum chaos. We study the corresponding many-particle level statistics by calculating the spectral form factor analytically using algebraic methods of random matrix theory, and match it with an exact numerical simulation. Despite the integrability of the theory, the many-body spectral rigidity is found to have a surprisingly rich landscape. In particular, we find a residual repulsion of distant many-body levels stemming from single-particle chaos, together with islands of level attraction. These results are encoded in an exponential ramp in the spectral form factor, which we show to be a universal feature of nonergodic many-fermion systems embedded in a chaotic medium.

8.
Phys Rev Lett ; 124(15): 155302, 2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32357048

RESUMEN

The kicked rotor system is a textbook example of how classical and quantum dynamics can drastically differ. The energy of a classical particle confined to a ring and kicked periodically will increase linearly in time whereas in the quantum version the energy saturates after a finite number of kicks. The quantum system undergoes Anderson localization in angular-momentum space. Conventional wisdom says that in a many-particle system with short-range interactions the localization will be destroyed due to the coupling of widely separated momentum states. Here we provide evidence that for an interacting one-dimensional Bose gas, the Lieb-Liniger model, the dynamical localization can persist at least for an unexpectedly long time.

9.
Phys Rev Lett ; 125(1): 014101, 2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-32678633

RESUMEN

The majority of classical dynamical systems are chaotic and exhibit the butterfly effect: a minute change in initial conditions has exponentially large effects later on. But this phenomenon is difficult to reconcile with quantum mechanics. One of the main goals in the field of quantum chaos is to establish a correspondence between the dynamics of classical chaotic systems and their quantum counterparts. In isolated systems in the absence of decoherence, there is such a correspondence in dynamics, but it usually persists only over a short time window, after which quantum interference washes out classical chaos. We demonstrate that quantum mechanics can also play the opposite role and generate exponential instabilities in classically nonchaotic systems within this early-time window. Our calculations employ the out-of-time-ordered correlator (OTOC)-a diagnostic that reduces to the Lyapunov exponent in the classical limit but is well defined for general quantum systems. We show that certain classically nonchaotic models, such as polygonal billiards, demonstrate a Lyapunov-like exponential growth of the OTOC at early times with Planck's-constant-dependent rates. This behavior is sharply contrasted with the slow early-time growth of the analog of the OTOC in the systems' classical counterparts. These results suggest that classical-to-quantum correspondence in dynamics is violated in the OTOC even before quantum interference develops.

10.
Phys Rev Lett ; 125(1): 010404, 2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-32678647

RESUMEN

The Peierls instability toward a charge density wave is a canonical example of phonon-driven strongly correlated physics and is intimately related to topological quantum matter and exotic superconductivity. We propose a method for realizing an analogous photon-mediated Peierls transition, using a system of one-dimensional tubes of interacting Bose or Fermi atoms trapped inside a multimode confocal cavity. Pumping the cavity transversely engineers a cavity-mediated metal-to-insulator transition in the atomic system. For strongly interacting bosons in the Tonks-Girardeau limit, this transition can be understood (through fermionization) as being the Peierls instability. We extend the calculation to finite values of the interaction strength and derive analytic expressions for both the cavity field and mass gap. They display nontrivial power law dependence on the dimensionless matter-light coupling.

11.
Proc Natl Acad Sci U S A ; 114(10): 2503-2508, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28196896

RESUMEN

We observed and controlled the Brownian motion of solitons. We launched solitonic excitations in highly elongated [Formula: see text] Bose-Einstein condensates (BECs) and showed that a dilute background of impurity atoms in a different internal state dramatically affects the soliton. With no impurities and in one dimension (1D), these solitons would have an infinite lifetime, a consequence of integrability. In our experiment, the added impurities scatter off the much larger soliton, contributing to its Brownian motion and decreasing its lifetime. We describe the soliton's diffusive behavior using a quasi-1D scattering theory of impurity atoms interacting with a soliton, giving diffusion coefficients consistent with experiment.

12.
Phys Rev Lett ; 122(16): 167002, 2019 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-31075022

RESUMEN

Driving a conventional superconductor with an appropriately tuned classical electromagnetic field can lead to an enhancement of superconductivity via a redistribution of the quasiparticles into a more favorable nonequilibrium distribution-a phenomenon known as the Eliashberg effect. Here, we theoretically consider coupling a two-dimensional superconducting film to the quantized electromagnetic modes of a microwave resonator cavity. As in the classical Eliashberg case, we use a kinetic equation to study the effect of the fluctuating, dynamical electromagnetic field on the Bogoliubov quasiparticles. We find that when the photon and quasiparticle systems are out of thermal equilibrium, a redistribution of quasiparticles into a more favorable nonequilibrium steady state occurs, thereby enhancing superconductivity in the sample. We predict that by tailoring the cavity environment (e.g., the photon occupation and spectral functions), enhancement can be observed in a variety of parameter regimes, offering a large degree of tunability.

13.
Phys Rev Lett ; 122(4): 047003, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30768322

RESUMEN

We report anomalous enhancement of the critical current at low temperatures in gate-tunable Josephson junctions made from topological insulator BiSbTeSe_{2} nanoribbons with superconducting Nb electrodes. In contrast to conventional junctions, as a function of the decreasing temperature T, the increasing critical current I_{c} exhibits a sharp upturn at a temperature T_{*} around 20% of the junction critical temperature for several different samples and various gate voltages. The I_{c} vs T demonstrates a short junction behavior for T>T_{*}, but crosses over to a long junction behavior for T

14.
Nature ; 494(7435): 49-54, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23389539

RESUMEN

Spin-orbit coupling links a particle's velocity to its quantum-mechanical spin, and is essential in numerous condensed matter phenomena, including topological insulators and Majorana fermions. In solid-state materials, spin-orbit coupling originates from the movement of electrons in a crystal's intrinsic electric field, which is uniquely prescribed in any given material. In contrast, for ultracold atomic systems, the engineered 'material parameters' are tunable: a variety of synthetic spin-orbit couplings can be engineered on demand using laser fields. Here we outline the current experimental and theoretical status of spin-orbit coupling in ultracold atomic systems, discussing unique features that enable physics impossible in any other known setting.

15.
Phys Rev Lett ; 121(17): 176603, 2018 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-30411937

RESUMEN

The dynamo effect is a class of macroscopic phenomena responsible for generating and maintaining magnetic fields in astrophysical bodies. It hinges on the hydrodynamic three-dimensional motion of conducting gases and plasmas that achieve high hydrodynamic and/or magnetic Reynolds numbers due to the large length scales involved. The existing laboratory experiments modeling dynamos are challenging and involve large apparatuses containing conducting fluids subject to fast helical flows. Here we propose that electronic solid-state materials-in particular, hydrodynamic metals-may serve as an alternative platform to observe some aspects of the dynamo effect. Motivated by recent experimental developments, this Letter focuses on hydrodynamic Weyl semimetals, where the dominant scattering mechanism is due to interactions. We derive Navier-Stokes equations along with equations of magnetohydrodynamics that describe the transport of a Weyl electron-hole plasma appropriate in this regime. We estimate the hydrodynamic and magnetic Reynolds numbers for this system. The latter is a key figure of merit of the dynamo mechanism. We show that it can be relatively large to enable observation of the dynamo-induced magnetic field bootstrap in an experiment. Finally, we generalize the simplest dynamo instability model-the Ponomarenko dynamo-to the case of a hydrodynamic Weyl semimetal and show that the chiral anomaly term reduces the threshold magnetic Reynolds number for the dynamo instability.

16.
Phys Rev Lett ; 118(8): 086801, 2017 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-28282154

RESUMEN

It was proposed recently that the out-of-time-ordered four-point correlator (OTOC) may serve as a useful characteristic of quantum-chaotic behavior, because, in the semiclassical limit ℏ→0, its rate of exponential growth resembles the classical Lyapunov exponent. Here, we calculate the four-point correlator C(t) for the classical and quantum kicked rotor-a textbook driven chaotic system-and compare its growth rate at initial times with the standard definition of the classical Lyapunov exponent. Using both quantum and classical arguments, we show that the OTOC's growth rate and the Lyapunov exponent are, in general, distinct quantities, corresponding to the logarithm of the phase-space averaged divergence rate of classical trajectories and to the phase-space average of the logarithm, respectively. The difference appears to be more pronounced in the regime of low kicking strength K, where no classical chaos exists globally. In this case, the Lyapunov exponent quickly decreases as K→0, while the OTOC's growth rate may decrease much slower, showing a higher sensitivity to small chaotic islands in the phase space. We also show that the quantum correlator as a function of time exhibits a clear singularity at the Ehrenfest time t_{E}: transitioning from a time-independent value of t^{-1}lnC(t) at tt_{E}. We note that the underlying physics here is the same as in the theory of weak (dynamical) localization [Aleiner and Larkin, Phys. Rev. B 54, 14423 (1996)PRBMDO0163-182910.1103/PhysRevB.54.14423; Tian, Kamenev, and Larkin, Phys. Rev. Lett. 93, 124101 (2004)PRLTAO0031-900710.1103/PhysRevLett.93.124101] and is due to a delay in the onset of quantum interference effects, which occur sharply at a time of the order of the Ehrenfest time.

17.
Phys Rev Lett ; 116(4): 046801, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26871349

RESUMEN

Several recent experiments have reported an anomalous temperature dependence of the Coulomb drag effect in electron-hole bilayers. Motivated by these puzzling data, we study theoretically a low-density electron-hole bilayer, where electrons and holes avoid quantum degeneracy by forming excitons. We describe the ionization-recombination crossover between the electron-hole plasma and exciton gas and calculate both the intralayer and drag resistivity as a function of temperature. The latter exhibits a minimum followed by a sharp upturn at low temperatures, in qualitative agreement with the experimental observations [see, e.g., J. A. Seamons et al., Phys. Rev. Lett. 102, 026804 (2009)]. Importantly, the drag resistivity in the proposed scenario is found to be rather insensitive to a mismatch in electron and hole concentrations, in sharp contrast to the scenario of electron-hole Cooper pairing.

18.
Phys Rev Lett ; 116(22): 225301, 2016 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-27314722

RESUMEN

We explore the quantum dynamics of a bright matter-wave soliton in a quasi-one-dimensional bosonic superfluid with attractive interactions. Specifically, we focus on the dissipative forces experienced by the soliton due to its interaction with Bogoliubov excitations. Using the collective coordinate approach and the Keldysh formalism, a Langevin equation of motion for the soliton is derived from first principles. The equation contains a stochastic Langevin force (associated with quantum noise) and a nonlocal in time dissipative force, which appears due to inelastic scattering of Bogoliubov quasiparticles off of the moving soliton. It is shown that Ohmic friction (i.e., a term proportional to the soliton's velocity) is absent in the integrable setup. However, the Markovian approximation gives rise to the Abraham-Lorentz force (i.e., a term proportional to the derivative of the soliton's acceleration), which is known from classical electrodynamics of a charged particle interacting with its own radiation. These Abraham-Lorentz equations famously contain a fundamental causality paradox, where the soliton (particle) interacts with excitations (radiation) originating from future events. We show, however, that the causality paradox is an artifact of the Markovian approximation, and our exact non-Markovian dissipative equations give rise to physical trajectories. We argue that the quantum friction discussed here should be observable in current quantum gas experiments.

19.
Phys Rev Lett ; 117(7): 076806, 2016 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-27563988

RESUMEN

The surface of a 3D topological insulator is described by a helical electron state with the electron's spin and momentum locked together. We show that in the presence of ferromagnetic fluctuations the surface of a topological insulator is unstable towards a superconducting state with unusual pairing, dubbed Amperean pairing. The key idea is that the dynamical fluctuations of a ferromagnetic layer deposited on the surface of a topological insulator couple to the electrons as gauge fields. The transverse components of the magnetic gauge fields are unscreened and can mediate an effective interaction between electrons. There is an attractive interaction between electrons with momenta in the same direction which makes the pairing to be of Amperean type. We show that this attractive interaction leads to a p-wave pairing instability of the Fermi surface in the Cooper channel.

20.
Phys Rev Lett ; 116(16): 166603, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-27152816

RESUMEN

Radio frequency tunable oscillators are vital electronic components for signal generation, characterization, and processing. They are often constructed with a resonant circuit and a "negative" resistor, such as a Gunn diode, involving complex structure and large footprints. Here we report that a piece of SmB_{6}, 100 µm in size, works as a current-controlled oscillator in the 30 MHz frequency range. SmB_{6} is a strongly correlated Kondo insulator that was recently found to have a robust surface state likely to be protected by the topology of its electronics structure. We exploit its nonlinear dynamics, and demonstrate large ac voltage outputs with frequencies from 20 Hz to 30 MHz by adjusting a small dc bias current. The behaviors of these oscillators agree well with a theoretical model describing the thermal and electronic dynamics of coupled surface and bulk states. With reduced crystal size we anticipate the device to work at higher frequencies, even in the THz regime. This type of oscillator might be realized in other materials with a metallic surface and a semiconducting bulk.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA