Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cell ; 176(5): 1068-1082.e19, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30739798

RESUMEN

The RNA-directed DNA methylation (RdDM) pathway in plants controls gene expression via cytosine DNA methylation. The ability to manipulate RdDM would shed light on the mechanisms and applications of DNA methylation to control gene expression. Here, we identified diverse RdDM proteins that are capable of targeting methylation and silencing in Arabidopsis when tethered to an artificial zinc finger (ZF-RdDM). We studied their order of action within the RdDM pathway by testing their ability to target methylation in different mutants. We also evaluated ectopic siRNA biogenesis, RNA polymerase V (Pol V) recruitment, targeted DNA methylation, and gene-expression changes at thousands of ZF-RdDM targets. We found that co-targeting both arms of the RdDM pathway, siRNA biogenesis and Pol V recruitment, dramatically enhanced targeted methylation. This work defines how RdDM components establish DNA methylation and enables new strategies for epigenetic gene regulation via targeted DNA methylation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Metilación de ADN/fisiología , ARN Polimerasas Dirigidas por ADN/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Citosina/metabolismo , ADN/metabolismo , Metilación de ADN/genética , ARN Polimerasas Dirigidas por ADN/genética , Regulación de la Expresión Génica de las Plantas/genética , ARN Polimerasa II/metabolismo , ARN de Planta/genética , ARN Interferente Pequeño/metabolismo
2.
Cell ; 163(2): 445-55, 2015 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-26451488

RESUMEN

RNA-directed DNA methylation in Arabidopsis thaliana is driven by the plant-specific RNA Polymerase IV (Pol IV). It has been assumed that a Pol IV transcript can give rise to multiple 24-nt small interfering RNAs (siRNAs) that target DNA methylation. Here, we demonstrate that Pol IV-dependent RNAs (P4RNAs) from wild-type Arabidopsis are surprisingly short in length (30 to 40 nt) and mirror 24-nt siRNAs in distribution, abundance, strand bias, and 5'-adenine preference. P4RNAs exhibit transcription start sites similar to Pol II products and are featured with 5'-monophosphates and 3'-misincorporated nucleotides. The 3'-misincorporation preferentially occurs at methylated cytosines on the template DNA strand, suggesting a co-transcriptional feedback to siRNA biogenesis by DNA methylation to reinforce silencing locally. These results highlight an unusual mechanism of Pol IV transcription and suggest a "one precursor, one siRNA" model for the biogenesis of 24-nt siRNAs in Arabidopsis.


Asunto(s)
Arabidopsis/metabolismo , ARN de Planta/genética , ARN Interferente Pequeño/genética , Adenina/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Metilación de ADN , ARN Polimerasas Dirigidas por ADN/metabolismo , Modelos Biológicos , Sitio de Iniciación de la Transcripción
3.
Cell ; 157(5): 1050-60, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24855943

RESUMEN

DNA methylation is a conserved epigenetic gene-regulation mechanism. DOMAINS REARRANGED METHYLTRANSFERASE (DRM) is a key de novo methyltransferase in plants, but how DRM acts mechanistically is poorly understood. Here, we report the crystal structure of the methyltransferase domain of tobacco DRM (NtDRM) and reveal a molecular basis for its rearranged structure. NtDRM forms a functional homodimer critical for catalytic activity. We also show that Arabidopsis DRM2 exists in complex with the small interfering RNA (siRNA) effector ARGONAUTE4 (AGO4) and preferentially methylates one DNA strand, likely the strand acting as the template for RNA polymerase V-mediated noncoding RNA transcripts. This strand-biased DNA methylation is also positively correlated with strand-biased siRNA accumulation. These data suggest a model in which DRM2 is guided to target loci by AGO4-siRNA and involves base-pairing of associated siRNAs with nascent RNA transcripts.


Asunto(s)
Arabidopsis/enzimología , Metiltransferasas/metabolismo , Nicotiana/enzimología , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/metabolismo , Dominio Catalítico , Metiltransferasas/química , Modelos Moleculares , Datos de Secuencia Molecular , Nicotiana/metabolismo
4.
Plant Physiol ; 194(4): 1998-2016, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38236303

RESUMEN

Chromatin plays a crucial role in genome compaction and is fundamental for regulating multiple nuclear processes. Nucleosomes, the basic building blocks of chromatin, are central in regulating these processes, determining chromatin accessibility by limiting access to DNA for various proteins and acting as important signaling hubs. The association of histones with DNA in nucleosomes and the folding of chromatin into higher-order structures are strongly influenced by a variety of epigenetic marks, including DNA methylation, histone variants, and histone post-translational modifications. Additionally, a wide array of chaperones and ATP-dependent remodelers regulate various aspects of nucleosome biology, including assembly, deposition, and positioning. This review provides an overview of recent advances in our mechanistic understanding of how nucleosomes and chromatin organization are regulated by epigenetic marks and remodelers in plants. Furthermore, we present current technologies for profiling chromatin accessibility and organization.


Asunto(s)
Cromatina , Histonas , Cromatina/genética , Histonas/genética , Histonas/metabolismo , Nucleosomas/genética , Epigénesis Genética , ADN/metabolismo , Ensamble y Desensamble de Cromatina/genética , Plantas/genética , Plantas/metabolismo
5.
Plant Physiol ; 195(1): 640-651, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38285074

RESUMEN

The evolutionarily conserved POLYMERASE-ASSOCIATED FACTOR1 complex (Paf1C) participates in transcription, and research in animals and fungi suggests that it facilitates RNA POLYMERASE II (RNAPII) progression through chromatin. We examined the genomic distribution of the EARLY FLOWERING7 (ELF7) and VERNALIZATION INDEPENDENCE3 subunits of Paf1C in Arabidopsis (Arabidopsis thaliana). The occupancy of both subunits was confined to thousands of gene bodies and positively associated with RNAPII occupancy and the level of gene expression, supporting a role as a transcription elongation factor. We found that monoubiquitinated histone H2B, which marks most transcribed genes, was strongly reduced genome wide in elf7 seedlings. Genome-wide profiling of RNAPII revealed that in elf7 mutants, RNAPII occupancy was reduced throughout the gene body and at the transcription end site of Paf1C-targeted genes, suggesting a direct role for the complex in transcription elongation. Overall, our observations suggest a direct functional link between Paf1C activity, monoubiquitination of histone H2B, and the transition of RNAPII to productive elongation. However, for several genes, Paf1C may also act independently of H2Bub deposition or occupy these genes more stable than H2Bub marking, possibly reflecting the dynamic nature of Paf1C association and H2Bub turnover during transcription.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Histonas , ARN Polimerasa II , Transcripción Genética , Ubiquitinación , Histonas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Genoma de Planta , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
6.
Nucleic Acids Res ; 50(18): 10399-10417, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36189880

RESUMEN

Eukaryotes have evolved multiple ATP-dependent chromatin remodelers to shape the nucleosome landscape. We recently uncovered an evolutionarily conserved SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeler complex in plants reminiscent of the mammalian BAF subclass, which specifically incorporates the MINUSCULE (MINU) catalytic subunits and the TRIPLE PHD FINGERS (TPF) signature subunits. Here we report experimental evidence that establishes the functional relevance of TPF proteins for the complex activity. Our results show that depletion of TPF triggers similar pleiotropic phenotypes and molecular defects to those found in minu mutants. Moreover, we report the genomic location of MINU2 and TPF proteins as representative members of this SWI/SNF complex and their impact on nucleosome positioning and transcription. These analyses unravel the binding of the complex to thousands of genes where it modulates the position of the +1 nucleosome. These targets tend to produce 5'-shifted transcripts in the tpf and minu mutants pointing to the participation of the complex in alternative transcription start site usage. Interestingly, there is a remarkable correlation between +1 nucleosome shift and 5' transcript length change suggesting their functional connection. In summary, this study unravels the function of a plant SWI/SNF complex involved in +1 nucleosome positioning and transcription start site determination.


Asunto(s)
Arabidopsis , Proteínas Cromosómicas no Histona , Nucleosomas , Sitio de Iniciación de la Transcripción , Adenosina Trifosfato/metabolismo , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Cromatina , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Mamíferos/genética , Nucleosomas/genética , Dedos de Zinc PHD , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33495321

RESUMEN

DNA methylation is a major epigenetic modification found across species and has a profound impact on many biological processes. However, its influence on chromatin accessibility and higher-order genome organization remains unclear, particularly in plants. Here, we present genome-wide chromatin accessibility profiles of 18 Arabidopsis mutants that are deficient in CG, CHG, or CHH DNA methylation. We find that DNA methylation in all three sequence contexts impacts chromatin accessibility in heterochromatin. Many chromatin regions maintain inaccessibility when DNA methylation is lost in only one or two sequence contexts, and signatures of accessibility are particularly affected when DNA methylation is reduced in all contexts, suggesting an interplay between different types of DNA methylation. In addition, we found that increased chromatin accessibility was not always accompanied by increased transcription, suggesting that DNA methylation can directly impact chromatin structure by other mechanisms. We also observed that an increase in chromatin accessibility was accompanied by enhanced long-range chromatin interactions. Together, these results provide a valuable resource for chromatin architecture and DNA methylation analyses and uncover a pivotal role for methylation in the maintenance of heterochromatin inaccessibility.


Asunto(s)
Arabidopsis/genética , Cromatina/genética , Metilación de ADN/genética , Genoma de Planta , Mutación/genética , Transcripción Genética
8.
Proc Natl Acad Sci U S A ; 115(9): E2125-E2134, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29444862

RESUMEN

DNA methylation is an important epigenetic modification involved in gene regulation and transposable element silencing. Changes in DNA methylation can be heritable and, thus, can lead to the formation of stable epialleles. A well-characterized example of a stable epiallele in plants is fwa, which consists of the loss of DNA cytosine methylation (5mC) in the promoter of the FLOWERING WAGENINGEN (FWA) gene, causing up-regulation of FWA and a heritable late-flowering phenotype. Here we demonstrate that a fusion between the catalytic domain of the human demethylase TEN-ELEVEN TRANSLOCATION1 (TET1cd) and an artificial zinc finger (ZF) designed to target the FWA promoter can cause highly efficient targeted demethylation, FWA up-regulation, and a heritable late-flowering phenotype. Additional ZF-TET1cd fusions designed to target methylated regions of the CACTA1 transposon also caused targeted demethylation and changes in expression. Finally, we have developed a CRISPR/dCas9-based targeted demethylation system using the TET1cd and a modified SunTag system. Similar to the ZF-TET1cd fusions, the SunTag-TET1cd system is able to target demethylation and activate gene expression when directed to the FWA or CACTA1 loci. Our study provides tools for targeted removal of 5mC at specific loci in the genome with high specificity and minimal off-target effects. These tools provide the opportunity to develop new epialleles for traits of interest, and to reactivate expression of previously silenced genes, transgenes, or transposons.


Asunto(s)
Arabidopsis/genética , Metilación de ADN , Genoma de Planta , Oxigenasas de Función Mixta/química , Proteínas Proto-Oncogénicas/química , Proteínas de Arabidopsis/metabolismo , Dominio Catalítico , Elementos Transponibles de ADN , ADN de Plantas/química , Epigénesis Genética , Flores , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Proteínas de Homeodominio/metabolismo , Humanos , Mutación , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Dedos de Zinc
9.
New Phytol ; 227(1): 38-44, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32159848

RESUMEN

DNA methylation is an epigenetic mark that regulates multiple processes, such as gene expression and genome stability. Mutants and pharmacological treatments have been instrumental in the study of this mark in plants, although their genome-wide effect complicates the direct association between changes in methylation and a particular phenotype. A variety of tools that allow locus-specific manipulation of DNA methylation can be used to assess its direct role in specific processes, as well as to create novel epialleles. Recently, new tools that recruit the methylation machinery directly to target loci through programmable DNA-binding proteins have expanded the tool kit available to researchers. This review provides an overview of DNA methylation in plants and discusses the tools that have recently been developed for its manipulation.


Asunto(s)
Metilación de ADN , Plantas , Metilación de ADN/genética , Plantas/genética
10.
PLoS Genet ; 12(6): e1006092, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27253878

RESUMEN

Eukaryotic genomes are regulated by epigenetic marks that act to modulate transcriptional control as well as to regulate DNA replication and repair. In Arabidopsis thaliana, mutation of the ATXR5 and ATXR6 histone methyltransferases causes reduction in histone H3 lysine 27 monomethylation, transcriptional upregulation of transposons, and a genome instability defect in which there is an accumulation of excess DNA corresponding to pericentromeric heterochromatin. We designed a forward genetic screen to identify suppressors of the atxr5/6 phenotype that uncovered loss-of-function mutations in two components of the TREX-2 complex (AtTHP1, AtSAC3B), a SUMO-interacting E3 ubiquitin ligase (AtSTUbL2) and a methyl-binding domain protein (AtMBD9). Additionally, using a reverse genetic approach, we show that a mutation in a plant homolog of the tumor suppressor gene BRCA1 enhances the atxr5/6 phenotype. Through characterization of these mutations, our results suggest models for the production atxr5 atxr6-induced extra DNA involving conflicts between the replicative and transcriptional processes in the cell, and suggest that the atxr5 atxr6 transcriptional defects may be the cause of the genome instability defects in the mutants. These findings highlight the critical intersection of transcriptional silencing and DNA replication in the maintenance of genome stability of heterochromatin.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Silenciador del Gen/fisiología , Inestabilidad Genómica/genética , Transcripción Genética/genética , Caspasas/genética , Metilación de ADN/genética , Replicación del ADN/genética , Heterocromatina/genética , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/genética , Metiltransferasas/genética , Mutación/genética
11.
Proc Natl Acad Sci U S A ; 113(50): E8106-E8113, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27911846

RESUMEN

DNA methylation plays important roles in many biological processes, such as silencing of transposable elements, imprinting, and regulating gene expression. Many studies of DNA methylation have shown its essential roles in angiosperms (flowering plants). However, few studies have examined the roles and patterns of DNA methylation in gymnosperms. Here, we present genome-wide high coverage single-base resolution methylation maps of Norway spruce (Picea abies) from both needles and somatic embryogenesis culture cells via whole genome bisulfite sequencing. On average, DNA methylation levels of CG and CHG of Norway spruce were higher than most other plants studied. CHH methylation was found at a relatively low level; however, at least one copy of most of the RNA-directed DNA methylation pathway genes was found in Norway spruce, and CHH methylation was correlated with levels of siRNAs. In comparison with needles, somatic embryogenesis culture cells that are used for clonally propagating spruce trees showed lower levels of CG and CHG methylation but higher level of CHH methylation, suggesting that like in other species, these culture cells show abnormal methylation patterns.


Asunto(s)
Metilación de ADN , ADN de Plantas/genética , ADN de Plantas/metabolismo , Picea/genética , Picea/metabolismo , Secuencia de Bases , Células Cultivadas , Secuencia Conservada , Cycadopsida/genética , Cycadopsida/metabolismo , Genoma de Planta , Filogenia , Picea/embriología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo
12.
Proc Natl Acad Sci U S A ; 109(33): 13446-51, 2012 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-22847438

RESUMEN

Plant development is modulated by the convergence of multiple environmental and endogenous signals, and the mechanisms that allow the integration of different signaling pathways is currently being unveiled. A paradigmatic case is the concurrence of brassinosteroid (BR) and gibberellin (GA) signaling in the control of cell expansion during photomorphogenesis, which is supported by physiological observations in several plants but for which no molecular mechanism has been proposed. In this work, we show that the integration of these two signaling pathways occurs through the physical interaction between the DELLA protein GAI, which is a major negative regulator of the GA pathway, and BRASSINAZOLE RESISTANT1 (BZR1), a transcription factor that broadly regulates gene expression in response to BRs. We provide biochemical evidence, both in vitro and in vivo, indicating that GAI inactivates the transcriptional regulatory activity of BZR1 upon their interaction by inhibiting the ability of BZR1 to bind to target promoters. The physiological relevance of this interaction was confirmed by the observation that the dominant gai-1 allele interferes with BR-regulated gene expression, whereas the bzr1-1D allele displays enhanced resistance to DELLA accumulation during hypocotyl elongation. Because DELLA proteins mediate the response to multiple environmental signals, our results provide an initial molecular framework for the integration with BRs of additional pathways that control plant development.


Asunto(s)
Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Giberelinas/metabolismo , Transducción de Señal , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Oscuridad , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Giberelinas/farmacología , Hipocótilo/efectos de los fármacos , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
13.
bioRxiv ; 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36993677

RESUMEN

For plants adapted to bright light, a decrease in the amount of light received can be detrimental to their growth and survival. Consequently, in response to shade from surrounding vegetation, they initiate a suite of molecular and morphological changes known as the shade avoidance response (SAR) through which stems and petioles elongate in search for light. Under sunlight-night cycles, the plant's responsiveness to shade varies across the day, being maximal at dusk time. While a role for the circadian clock in this regulation has long been proposed, mechanistic understanding of how it is achieved is incomplete. Here we show that the clock component GIGANTEA (GI) directly interacts with the transcriptional regulator PHYTOCHROME INTERACTING FACTOR 7 (PIF7), a key player in the response to shade. GI represses PIF7 transcriptional activity and the expression of its target genes in response to shade, thereby fine-tuning the magnitude of the response to limiting light conditions. We find that, under light/dark cycles, this function of GI is required to adequately modulate the gating of the response to shade at dusk. Importantly, we also show that GI expression in epidermal cells is sufficient for proper SAR regulation.

14.
bioRxiv ; 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36711532

RESUMEN

MOM1 is an Arabidopsis factor previously shown to mediate transcriptional silencing independent of major DNA methylation changes. Here we found that MOM1 localizes with sites of RNA-directed DNA methylation (RdDM). Tethering MOM1 with artificial zinc finger to unmethylated FWA promoter led to establishment of DNA methylation and FWA silencing. This process was blocked by mutations in components of the Pol V arm of the RdDM machinery, as well as by mutation of MORC6 . We found that at some endogenous RdDM sites, MOM1 is required to maintain DNA methylation and a closed chromatin state. In addition, efficient silencing of newly introduced FWA transgenes was impaired by mutation of MOM1 or mutation of genes encoding the MOM1 interacting PIAL1/2 proteins. In addition to RdDM sites, we identified a group of MOM1 peaks at active chromatin near genes that colocalized with MORC6. These findings demonstrate a multifaceted role of MOM1 in genome regulation.

15.
Nat Plants ; 9(3): 460-472, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36879017

RESUMEN

DNA methylation has been utilized for target gene silencing in plants. However, it is not well understood whether other silencing pathways can be also used to manipulate gene expression. Here we performed a gain-of-function screen for proteins that could silence a target gene when fused to an artificial zinc finger. We uncovered many proteins that suppressed gene expression through DNA methylation, histone H3K27me3 deposition, H3K4me3 demethylation, histone deacetylation, inhibition of RNA polymerase II transcription elongation or Ser-5 dephosphorylation. These proteins also silenced many other genes with different efficacies, and a machine learning model could accurately predict the efficacy of each silencer on the basis of various chromatin features of the target loci. Furthermore, some proteins were also able to target gene silencing when used in a dCas9-SunTag system. These results provide a more comprehensive understanding of epigenetic regulatory pathways in plants and provide an armament of tools for targeted gene manipulation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Histonas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Silenciador del Gen , Expresión Génica , Regulación de la Expresión Génica de las Plantas
16.
Nat Commun ; 14(1): 4135, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37438334

RESUMEN

MORPHEUS' MOLECULE1 (MOM1) is an Arabidopsis factor previously shown to mediate transcriptional silencing independent of major DNA methylation changes. Here we find that MOM1 localizes with sites of RNA-directed DNA methylation (RdDM). Tethering MOM1 with an artificial zinc finger to an unmethylated FWA promoter leads to establishment of DNA methylation and FWA silencing. This process is blocked by mutations in components of the Pol V arm of the RdDM machinery, as well as by mutation of MICRORCHIDIA 6 (MORC6). We find that at some endogenous RdDM sites, MOM1 is required to maintain DNA methylation and a closed chromatin state. In addition, efficient silencing of newly introduced FWA transgenes is impaired in the mom1 mutant. In addition to RdDM sites, we identify a group of MOM1 peaks at active chromatin near genes that colocalized with MORC6. These findings demonstrate a multifaceted role of MOM1 in genome regulation.


Asunto(s)
Adenosina Trifosfatasas , Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cromatina/genética , ADN , Metilación de ADN , Proteínas de Homeodominio , ARN , Factores de Transcripción/genética , Adenosina Trifosfatasas/genética
17.
Nat Commun ; 14(1): 1736, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36977663

RESUMEN

Arabidopsis telomeric repeat binding factors (TRBs) can bind telomeric DNA sequences to protect telomeres from degradation. TRBs can also recruit Polycomb Repressive Complex 2 (PRC2) to deposit tri-methylation of H3 lysine 27 (H3K27me3) over certain target loci. Here, we demonstrate that TRBs also associate and colocalize with JUMONJI14 (JMJ14) and trigger H3K4me3 demethylation at some loci. The trb1/2/3 triple mutant and the jmj14-1 mutant show an increased level of H3K4me3 over TRB and JMJ14 binding sites, resulting in up-regulation of their target genes. Furthermore, tethering TRBs to the promoter region of genes with an artificial zinc finger (TRB-ZF) successfully triggers target gene silencing, as well as H3K27me3 deposition, and H3K4me3 removal. Interestingly, JMJ14 is predominantly recruited to ZF off-target sites with low levels of H3K4me3, which is accompanied with TRB-ZFs triggered H3K4me3 removal at these loci. These results suggest that TRB proteins coordinate PRC2 and JMJ14 activities to repress target genes via H3K27me3 deposition and H3K4me3 removal.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Histonas/genética , Histonas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Desmetilación , Regulación de la Expresión Génica de las Plantas , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo
18.
Nat Commun ; 14(1): 85, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36604425

RESUMEN

Pathogens rely on expression of host susceptibility (S) genes to promote infection and disease. As DNA methylation is an epigenetic modification that affects gene expression, blocking access to S genes through targeted methylation could increase disease resistance. Xanthomonas phaseoli pv. manihotis, the causal agent of cassava bacterial blight (CBB), uses transcription activator-like20 (TAL20) to induce expression of the S gene MeSWEET10a. In this work, we direct methylation to the TAL20 effector binding element within the MeSWEET10a promoter using a synthetic zinc-finger DNA binding domain fused to a component of the RNA-directed DNA methylation pathway. We demonstrate that this methylation prevents TAL20 binding, blocks transcriptional activation of MeSWEET10a in vivo and that these plants display decreased CBB symptoms while maintaining normal growth and development. This work therefore presents an epigenome editing approach useful for crop improvement.


Asunto(s)
Manihot , Xanthomonas , Manihot/genética , Epigenoma , Xanthomonas/genética , Resistencia a la Enfermedad/genética , Factores de Transcripción/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
19.
Plant J ; 67(5): 817-26, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21569134

RESUMEN

Gravitropism aligns plant growth with gravity. It involves gravity perception and the asymmetric distribution of the phytohormone auxin. Here we provide insights into the mechanism for hypocotyl gravitropic growth. We show that the Arabidopsis thaliana PIN3 auxin transporter is required for the asymmetric auxin distribution for the gravitropic response. Gravistimulation polarizes PIN3 to the bottom side of hypocotyl endodermal cells, which correlates with an increased auxin response at the lower hypocotyl side. Both PIN3 polarization and hypocotyl bending require the activity of the trafficking regulator GNOM and the protein kinase PINOID. Our data suggest that gravity-induced PIN3 polarization diverts the auxin flow to mediate the asymmetric distribution of auxin for gravitropic shoot bending.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Gravitropismo/fisiología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Transporte Biológico , Polaridad Celular , Gravitación , Gravitropismo/genética , Sensación de Gravedad , Factores de Intercambio de Guanina Nucleótido/genética , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Mutación , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente/citología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/fisiología , Proteínas Serina-Treonina Quinasas/genética , Plantones/citología , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/fisiología
20.
Plant J ; 67(4): 622-34, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21535259

RESUMEN

The apical hook develops in the upper part of the hypocotyl when seeds buried in the soil germinate, and serves to protect cotyledons and the shoot apical meristem from possible damage caused by pushing through the soil. The curvature is formed through differential cell growth that occurs at the two opposite sides of the hypocotyl, and it is established by a gradient of auxin activity and refined by the coordinated action of auxin and ethylene. Here we show that gibberellins (GAs) promote hook development through the transcriptional regulation of several genes of the ethylene and auxin pathways in Arabidopsis. The level of GA activity determines the speed of hook formation and the extent of the curvature during the formation phase independently of ethylene, probably by modulating auxin transport and response through HLS1, PIN3, and PIN7. Moreover, GAs cooperate with ethylene in preventing hook opening, in part through the induction of ethylene production mediated by ACS5/ETO2 and ACS8.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Etilenos/metabolismo , Giberelinas/farmacología , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico , Vías Biosintéticas , ADN Complementario/genética , Etilenos/análisis , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Germinación , Hipocótilo/efectos de los fármacos , Hipocótilo/crecimiento & desarrollo , Meristema/efectos de los fármacos , Meristema/crecimiento & desarrollo , Mutación , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , ARN de Planta/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Plantones/efectos de los fármacos , Plantones/genética , Plantones/crecimiento & desarrollo , Semillas/efectos de los fármacos , Semillas/genética , Semillas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA