Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38256180

RESUMEN

Both cyclodextrin (CD) and porous silica possess interesting properties of adsorption and release. A silica-CD hybrid, therefore, could synergically merge the properties of the two components, giving rise to a material with appealing properties for both environmental and pharmaceutical applications. With this aim, in the present study, a first hybrid is obtained through one-pot sol-gel synthesis starting from CD and tetramethyl orthosilicate (TMOS) as a silica precursor. In particular, methyl-ß-cyclodextrin (bMCD) is selected for this purpose. The obtained bMCD-silica hybrid is a dense material containing a considerable amount of bMCD (45 wt.%) in amorphous form and therefore represents a promising support. However, since a high specific surface area is desirable to increase the release/adsorption properties, an attempt is made to produce the hybrid material in the form of an aerogel. Both the synthesis of the gel and its drying in supercritical CO2 are optimized in order to reach this goal. All the obtained samples are characterized in terms of their physico-chemical properties (infra-red spectroscopy, thermogravimetry) and structure (X-ray diffraction, electron microscopy) in order to investigate their composition and the interaction between the organic component (bMCD) and the inorganic one (silica).


Asunto(s)
Ciclodextrinas , Fenómenos Fisiológicos , Adsorción , Desecación , Dióxido de Silicio
2.
EMBO Rep ; 21(10): e50662, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32776417

RESUMEN

Dominant missense mutations in the human serine protease FAM111A underlie perinatally lethal gracile bone dysplasia and Kenny-Caffey syndrome, yet how FAM111A mutations lead to disease is not known. We show that FAM111A proteolytic activity suppresses DNA replication and transcription by displacing key effectors of these processes from chromatin, triggering rapid programmed cell death by Caspase-dependent apoptosis to potently undermine cell viability. Patient-associated point mutations in FAM111A exacerbate these phenotypes by hyperactivating its intrinsic protease activity. Moreover, FAM111A forms a complex with the uncharacterized homologous serine protease FAM111B, point mutations in which cause a hereditary fibrosing poikiloderma syndrome, and we demonstrate that disease-associated FAM111B mutants display amplified proteolytic activity and phenocopy the cellular impact of deregulated FAM111A catalytic activity. Thus, patient-associated FAM111A and FAM111B mutations may drive multisystem disorders via a common gain-of-function mechanism that relieves inhibitory constraints on their protease activities to powerfully undermine cellular fitness.


Asunto(s)
Enfermedades del Desarrollo Óseo , Hiperostosis Cortical Congénita , Proteínas de Ciclo Celular/genética , Mutación con Ganancia de Función , Humanos , Mutación , Péptido Hidrolasas , Receptores Virales
3.
Molecules ; 26(9)2021 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-33922927

RESUMEN

Piroxicam (PRX) is a commonly prescribed nonsteroidal anti-inflammatory drug. Its efficacy, however, is partially limited by its low water solubility. In recent years, different studies have tackled this problem and have suggested delivering PRX through solid dispersions. All these strategies, however, involve the use of potentially harmful solvents for the loading procedure. Since piroxicam is soluble in supercritical CO2 (scCO2), the present study aims, for the first time, to adsorb PRX onto mesoporous silica using scCO2, which is known to be a safer and greener technique compared to the organic solvent-based ones. For comparison, PRX is also loaded by adsorption from solution and incipient wetness impregnation using ethanol as solvent. Two different commercial mesoporous silicas are used (SBA-15 and Grace Syloid® XDP), which differ in porosity order and surface silanol population. Physico-chemical analyses show that the most promising results are obtained through scCO2, which yields the amorphization of PRX, whereas some crystallization occurs in the case of adsorption from solution and IWI. The highest loading of PRX by scCO2 is obtained in SBA-15 (15 wt.%), where molecule distribution appears homogeneous, with very limited pore blocking.


Asunto(s)
Antiinflamatorios no Esteroideos/química , Inflamación/tratamiento farmacológico , Piroxicam/química , Solubilidad/efectos de los fármacos , Antiinflamatorios no Esteroideos/uso terapéutico , Etanol/química , Humanos , Piroxicam/uso terapéutico , Dióxido de Silicio/química , Agua/química
4.
Molecules ; 26(16)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34443315

RESUMEN

Nanocellulose was extracted from short bast fibers, from hemp (Cannabis sativa L.) plants harvested at seed maturity, non-retted, and mechanically decorticated in a defibering apparatus, giving non-aligned fibers. A chemical pretreatment with NaOH and HCl allowed the removal of most of the non-cellulosic components of the fibers. No bleaching was performed. The chemically pretreated fibers were then refined in a beater and treated with a cellulase enzyme, followed by mechanical defibrillation in an ultrafine friction grinder. The fibers were characterized by microscopy, infrared spectroscopy, thermogravimetric analysis and X-ray diffraction after each step of the process to understand the evolution of their morphology and composition. The obtained nanocellulose suspension was composed of short nanofibrils with widths of 5-12 nm, stacks of nanofibrils with widths of 20-200 nm, and some larger fibers. The crystallinity index was found to increase from 74% for the raw fibers to 80% for the nanocellulose. The nanocellulose retained a yellowish color, indicating the presence of some residual lignin. The properties of the nanopaper prepared with the hemp nanocellulose were similar to those of nanopapers prepared with wood pulp-derived rod-like nanofibrils.


Asunto(s)
Cannabis/química , Celulosa/química , Productos Agrícolas/química , Nanopartículas/química , Celulosa/ultraestructura , Nanopartículas/ultraestructura , Tamaño de la Partícula , Solventes/química , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Termogravimetría , Difracción de Rayos X
5.
Front Pediatr ; 8: 614521, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33614543

RESUMEN

Robust and applicable risk-stratifying genetic factors at diagnosis in pediatric T-cell acute lymphoblastic leukemia (T-ALL) are still lacking, and most protocols rely on measurable residual disease (MRD) assessment. In our study, we aimed to analyze the impact of NOTCH1, FBXW7, PTEN, and RAS mutations, the measurable residual disease (MRD) levels assessed by flow cytometry (FCM-MRD) and other reported risk factors in a Spanish cohort of pediatric T-ALL patients. We included 199 patients treated with SEHOP and PETHEMA consecutive protocols from 1998 to 2019. We observed a better outcome of patients included in the newest SEHOP-PETHEMA-2013 protocol compared to the previous SHOP-2005 cohort. FCM-MRD significantly predicted outcome in both protocols, but the impact at early and late time points differed between protocols. The impact of FCM-MRD at late time points was more evident in SEHOP-PETHEMA 2013, whereas in SHOP-2005 FCM-MRD was predictive of outcome at early time points. Genetics impact was different in SHOP-2005 and SEHOP-PETHEMA-2013 cohorts: NOTCH1 mutations impacted on overall survival only in the SEHOP-PETHEMA-2013 cohort, whereas homozygous deletions of CDKN2A/B had a significantly higher CIR in SHOP-2005 patients. We applied the clinical classification combining oncogenetics, WBC count and MRD levels at the end of induction as previously reported by the FRALLE group. Using this score, we identified different subgroups of patients with statistically different outcome in both Spanish cohorts. In SHOP-2005, the FRALLE classifier identified a subgroup of high-risk patients with poorer survival. In the newest protocol SEHOP-PETHEMA-2013, a very low-risk group of patients with excellent outcome and no relapses was detected, with borderline significance. Overall, FCM-MRD, WBC count and oncogenetics may refine the risk-stratification, helping to design tailored approaches for pediatric T-ALL patients.

6.
Dent Mater ; 35(11): 1654-1664, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31554599

RESUMEN

OBJECTIVE: Resin-based composites are widely used in dental restorations; however, their volumetric shrinkage during polymerization leads to several issues that reduce the restoration survival rates. For overcoming this problem, a deep study of shrinkage phenomena is necessary. METHODS: In this study, micro-tomography (µ-CT) is combined with digital volume correlation (DVC) to investigate the effect of several factors on the polymerization strain of dental composites in model cavities: the presence/absence of an adhesive, the use of transparent/blackened cavities, and irradiation times between 1 and 40s. RESULTS: The results indicate that the presence of an adhesive at the interface between the cavity and composite does not reduce the total strain but instead limits it to a preferential direction. In addition, regardless of the conditions, the main strain is generated along the axis parallel to the polymerization irradiation (the vertical axis). Finally, the total strain appears to occur in the first 5s of irradiation, with no further evolution observed for longer irradiation times. SIGNIFICANCE: This work provides new insight into resin-based composite shrinkage and demonstrates the benefit of coupling DVC and µ-CT to better understand the degradation mechanisms of these materials.


Asunto(s)
Resinas Compuestas , Restauración Dental Permanente , Correlación de Datos , Ensayo de Materiales , Polimerizacion
7.
Acta Biomater ; 89: 391-402, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30831328

RESUMEN

The efficiency of calcium phosphate (CaP) bone substitutes can be improved by tuning their resorption rate. The influence of both crystal orientation and ion doping on resorption is here investigated for beta-tricalcium phosphate (ß-TCP). Non-doped and Mg-doped (1 and 6 mol%) sintered ß-TCP samples were immersed in acidic solution (pH 4.4) to mimic the environmental conditions found underneath active osteoclasts. The surfaces of ß-TCP samples were observed after acid-etching and compared to surfaces after osteoclastic resorption assays. ß-TCP grains exhibited similar patterns with characteristic intra-crystalline pillars after acid-etching and after cell-mediated resorption. Electron BackScatter Diffraction analyses, coupled with Scanning Electron Microscopy, Inductively Coupled Plasma-Mass Spectrometry and X-Ray Diffraction, demonstrated the influence of both grain orientation and doping on the process and kinetics of resorption. Grains with c-axis nearly perpendicular to the surface were preferentially etched in non-doped ß-TCP samples, whereas all grains with simple axis (a, b or c) nearly normal to the surface were etched in 6 mol% Mg-doped samples. In addition, both the dissolution rate and the percentage of etched surface were lower in Mg-doped specimens. Finally, the alignment direction of the intra-crystalline pillars was correlated with the preferential direction for dissolution. STATEMENT OF SIGNIFICANCE: The present work focuses on the resorption behavior of calcium phosphate bioceramics. A simple and cost-effective alternative to osteoclast culture was implemented to identify which material features drive resorption. For the first time, it was demonstrated that crystal orientation, measured by Electron Backscatter Diffraction, is the discriminating factor between grains, which resorbed first, and grains, which resorbed slower. It also elucidated how resorption kinetics can be tuned by doping ß-tricalcium phosphate with ions of interest. Doping with magnesium impacted lattice parameters. Therefore, the crystal orientations, which preferentially resorbed, changed, explaining the solubility decrease. These important findings pave the way for the design of optimized bone graft substitutes with tailored resorption kinetics.


Asunto(s)
Resorción Ósea/metabolismo , Fosfatos de Calcio , Osteoclastos/metabolismo , Animales , Resorción Ósea/patología , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacocinética , Fosfatos de Calcio/farmacología , Magnesio/química , Magnesio/farmacocinética , Magnesio/farmacología , Espectrometría de Masas , Ratones , Microscopía Electrónica de Rastreo , Osteoclastos/ultraestructura , Difracción de Rayos X
8.
Acta Biomater ; 53: 515-525, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28232255

RESUMEN

The mechanisms by which calcium phosphate bone substitutes evolve and are resorbed in vivo are not yet fully known. In particular, the formation of intermediate phases during resorption and evolution of the mechanical properties may be of crucial interest for their clinical efficiency. The in vitro tests proposed here are the first steps toward understanding these phenomena. Microporous Dicalcium Phosphate Dihydrate (DCPD) samples were immersed in tris(hydroxymethyl)aminomethane (TRIS) and Phosphate Buffered Saline (PBS) solutions, with or without daily refresh of the medium, for time-points up to 14days. Before and after immersion, samples were extensively characterised in terms of morphology, chemistry (XRD coupled with Rietveld analysis), microstructure (X-ray tomography, SEM observations) and local mechanical properties (instrumented micro-indentation). The composition of the immersion solutions was monitored in parallel (pH, elemental analysis). The results show the influence and importance of the experimental set-up and protocol on the formation of apatite and octacalcium phosphate concurrently to DCPD dissolution; moreover, strong inter-correlations between physico-chemistry, microstructure and mechanics are demonstrated. STATEMENT OF SIGNIFICANCE: Ideally, the resorption kinetics of biodegradable bone substitutes should be controlled to favor the healing processes of bone. Although biodegradable bone grafts are already used in surgeries, their resorption process is still partially unknown. The present work studies these resorption phenomena, their kinetics and mechanisms and their consequences on the properties of a calcium phosphate resorbable material. The original in vitro approach developed in this work couples for the first time physico-chemical, micro-structural and mechanical assessments. The dissolution of the CaP phase in body fluids and the reprecipitation of more stable phases are studied on a local scale, which has permitted to evidence and monitor the development of a gradient of properties between the surface and the core of the samples.


Asunto(s)
Líquidos Corporales/química , Cementos para Huesos/química , Sustitutos de Huesos/química , Fosfatos de Calcio/química , Ensayo de Materiales/métodos , Absorción Fisicoquímica , Adhesividad , Fuerza Compresiva , Módulo de Elasticidad , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA