Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 214(Pt 2): 113914, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35932834

RESUMEN

The synergistic combination of biocatalysts and nanomaterials provides a new interface of a robust biocatalytic system that can effectively remediate environmental pollutants. Enzymes, such as catalase-based constructs, impart the desired candidature for catalytic transformation processes and are potential alternatives to replace conventional remediation strategies that have become laborious and somewhat inefficient. Furthermore, the controlled or uncontrolled discharge of various emerging pollutants (EPs) into water bodies is equally proportional to the fast-growing population and extensive urbanization. EPs affect the entire living being and continuously deteriorate the environmental system, directly or indirectly. The occurrence of EPs (even released after partial treatments, but still in bioactive forms) disturbs ecological integrity. Due to the ineffectiveness of in-practice traditional remediation processes, new and robust treatment measures as effective and sustainable remediation have become a meaningful goal. In this context, special attention has been shifted to engineering an enzyme (catalase)-based biodegradation system with immense prospects in environmental cleanup. The unique synergistic combination of nanomaterials (having multifunctional attributes) with enzymes of interest makes them a state-of-the-art interface that can further ameliorate bio-catalysis and biodegradation performance. This review covers current research and scientific advancement in developing and deploying catalase-based biocatalytic systems to mitigate several EPs from the environment matrices. The biocatalytic features of catalase, along with the mechanistic insight into H2O2 neutralization, several nano-based materials loaded with catalase, including nanoparticles (NPs), carbon nanotubes (CNTs), metal-organic frameworks (MOFs), polymeric-based composites, oxime-functionalized cryo-gel disks, electro-spun nanofibrous membranes, and other hybrid materials have also been discussed with suitable examples.


Asunto(s)
Contaminantes Ambientales , Nanotubos de Carbono , Biodegradación Ambiental , Catalasa , Peróxido de Hidrógeno
2.
Chemosphere ; 286(Pt 2): 131710, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34343918

RESUMEN

Covalent organic frameworks (COFs) are an emergent group of crystalline porous materials that have gained incredible interest in recent years. With foreseeable controllable functionalities and structural configurations, the constructions and catalytic properties of these organic polymeric materials can be controlled to fabricate targeted materials. The specified monomer linkers and pre-designed architecture of COFs facilitate the post-synthetic modifications for introducing novel functions and useful properties. By virtue of inherent porosity, robust framework, well-ordered geometry, functionality, higher stability, and amenability to functionalization, COFs and COFs-based composites are regarded as prospective nanomaterials for environmental clean-up and remediation. This report spotlights the state-of-the-art advances and progress in COFs-based materials to efficiently mitigate pharmaceutical-based environmental pollutants from aqueous solutions. Synthesis approaches, structure, functionalization, and sustainability aspects of COFs are discussed. Moreover, the adsorptive and photocatalytic potential of COFs and their derived nanocomposites for removal and degradation of pharmaceuticals are thoroughly vetted. In addition to deciphering adsorption mechanism/isotherms, the stability, regeneratability and reproducibility are also delineated. Lastly, the outcomes are summed up, and new directions are proposed to widen the promise of COF-based smart materials in diverse fields.


Asunto(s)
Contaminantes Ambientales , Estructuras Metalorgánicas , Preparaciones Farmacéuticas , Materiales Inteligentes , Estudios Prospectivos , Reproducibilidad de los Resultados
3.
Chemosphere ; 307(Pt 3): 136035, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35973503

RESUMEN

Rampant industrial boom, urbanization, and exponential population growth resulted in widespread environmental pollution, with water being one of the leading affected resources. All kinds of pollutants, including phenols, industrial dyes, antibiotics, pharmaceutically active residues, and persistent/volatile organic compounds, have a paramount effect, either directly or indirectly, on human health and aquatic entities. Strategies for affordable and efficient decontamination of these emerging pollutants have become the prime focus of academic researchers, industry, and government to constitute a sustainable human society. Classical treatment techniques for environmental contaminants are associated with several limitations, such as inefficiency, complex pretreatments, overall high process cost, high sludge generation, and highly toxic side-products formation. Enzymatic remediation is considered a green and ecologically friendlier method that holds considerable potential to mitigate any kinds of contaminating agents. Exploiting the potential of various peroxidases for pollution abatement is an emerging research area and has considerable advantages, such as efficiency and ease of handling, over other methods. This work is designed to provide recent progress in deploying peroxidases as green and versatile biocatalytic tools for the degradation and transformation of a spectrum of potentially hazardous environmental pollutants to broaden their scope for biotechnological and environmental purposes. More studies are required to explicate the degradation mechanisms, assess the toxicology levels of bio-transformed metabolites, and standardize the treatment strategies for economic viability.


Asunto(s)
Contaminantes Ambientales , Compuestos Orgánicos Volátiles , Contaminantes Químicos del Agua , Antibacterianos , Biodegradación Ambiental , Biotransformación , Colorantes/metabolismo , Contaminantes Ambientales/metabolismo , Humanos , Peroxidasas/metabolismo , Fenoles , Aguas del Alcantarillado , Agua , Contaminantes Químicos del Agua/química
4.
Int J Biol Macromol ; 167: 502-515, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33279559

RESUMEN

In recent years, the synthesis and application of green and sustainable products have become global ecological and societal issues. Based on the principles of green chemistry, the application of different biocatalysts not only produce target products and decreases side effects but also enhances the selectivity and activity. Enzyme-based biocatalysts are very interesting due to their high catalytic performance, eco-friendly reaction systems, and selectivity. Immobilization is demonstrated as a favorable approach to improve the stability and recyclability of enzymes. Among different supports, porous and crystalline materials, covalent organic frameworks (COFs), represent an interesting class of support matrices for the immobilization of different enzymes. Owing to tunable physicochemical characteristics, a high degree of crystallinity, large specific surface area, superior adsorption capacity, pre-designable structure and marked stability, COFs might consider as perfect host materials for improving the desirable properties of enzymes, such as poor stability, low operational range, lack of repeatability, and products/by-products inhibition for large-scale applications. The enzyme-incorporated COFs have emerged as one of the hopeful ways to constitute tailor-made biocatalytic systems, which can be employed in an array of reactions. Highly porous nature of many COFs led to increased process output in contrast to other micro/nanoparticles. The enzymes can be integrated into COFs through different techniques, including physical adsorption and direct covalent attachment between the enzyme molecules and COFs or through a cross-linking agent. Herein, we discuss and highlight the synthesis methods, properties, and functionalization of COFs and the recent literature for the application of these materials in enzymes immobilization. Main approaches for immobilization of enzymes into COFs and the catalytic applications of these materials are also presented. This study offers new avenues to address the limitations of traditional enzyme immobilization supports as well as delivers new possibilities to construct smart biocatalytic systems for diverse biotechnological applications.


Asunto(s)
Enzimas Inmovilizadas/química , Estructuras Metalorgánicas/química , Adsorción , Biocatálisis , Tecnología Química Verde , Microondas , Nanopartículas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA