Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Soft Matter ; 20(7): 1554-1564, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38270211

RESUMEN

Bottlebrush random copolymers (BRCPs), consisting of a random distribution of two homopolymer chains along a backbone, can segregate to the interface between two immiscible homopolymers. BRCPs undergo a reconfiguration, where each block segregates to one of the homopolymer phases, adopting a Janus-type structure, reducing the interfacial tension and promoting adhesion between the two homopolymers, thereby serving as a Janus bottlebrush copolymer (JBCP) compatibilizer. We synthesized a series of JBCPs by copolymerizing deuterated or hydrogenated polystyrene (DPS/PS) and poly(tert-butyl acrylate) (PtBA) macromonomers using ruthenium benzylidene-initiated ring-opening metathesis polymerization (ROMP). Subsequent acid-catalyzed hydrolysis converted the PtBA brushes to poly(acrylic acid) (PAA). The JBCPs were then placed at the interface between DPS/PS homopolymers and poly(2-vinyl pyridine) (P2VP) homopolymers, where the degree of polymerization of the backbone (NBB) and the grafting density (GD) of the JBCPs were varied. Neutron reflectivity (NR) was used to determine the interfacial width and segmental density distributions (including PS homopolymer, PS block, PAA block and P2VP homopolymer) across the polymer-polymer interface. Our findings indicate that the star-like JBCP with NBB = 6 produces the largest interfacial broadening. Increasing NBB to 100 (rod-like shape) and 250 (worm-like shape) reduced the interfacial broadening due to a decrease in the interactions between blocks and homopolymers by stretching of blocks. Decreasing the GD from 100% to 80% at NBB = 100 caused an increase the interfacial width, yet further decreasing the GD to 50% and 20% reduced the interfacial width, as 80% of GD may efficiently increase the flexibility of blocks and promote interactions between homopolymers, while maintaining relatively high number of blocks attached to one molecule. The interfacial conformation of JBCPs was further translated into compatibilization efficiency. Thin film morphology studies showed that only the lower NBB values (NBB = 6 and NBB = 24) and the 80% GD of NBB = 100 had bicontinuous morphologies, due to a sufficient binding energy that arrested phase separation, supported by mechanical testing using asymmetric double cantilever beam (ADCB) tests. These provide fundamental insights into the assembly behavior of JBCPs compatibilizers at homopolymer interfaces, opening strategies for the design of new BCP compatibilizers.

2.
Angew Chem Int Ed Engl ; 63(11): e202400127, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38206892

RESUMEN

The phase behavior of block copolymers (BCPs) at the water-oil interface is influenced by the segmental interaction parameter ( χ ${\chi }$ ) and chain architecture. We synthesized a series of star block copolymers (s-BCPs) having polystyrene (PS) as core and poly(2-vinylpyridine) (P2VP) as corona. The interaction parameters of block-block ( χ ${\chi }$ PS-P2VP ) and block-solvent ( χ ${\chi }$ P2VP-solvent ) were varied by adjusting the pH of the aqueous solution. Lowering pH increased the fraction of quaternized-P2VP (Q-P2VP) with enhanced hydrophilicity. By transferring the equilibrated interfacial assemblies, morphologies ranging from bicontinuous films at pH of 7 and 3.1 to nanoporous and nanotubular structure at pH of 0.65 were observed. The nanoporous films formed hexagonally packed pores in s-BCP matrix, while nanotubes comprised Q-P2VP as corona and PS as core. Control over pore size, d-spacing between pores, and nanotube diameters was achieved by varying polymer concentration, molecular weight, volume fraction and arm number of s-BCPs. Large-scale nanoporous films were obtained by freeze-drying emulsions. Remarkably, the morphologies of linear BCPs were inverted, forming hexagonal-packed rigid spherical micelles with Q-P2VP as core and PS as corona in multilayer. This work provides insights of phase behaviors of BCP at fluids interface and offer a facile approach to prepare nanoporous film with well-controlled pore structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA