Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Hum Mol Genet ; 19(11): 2134-43, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20190274

RESUMEN

Multiple sclerosis (MS) is an autoimmune disease with a genetic component, caused at least in part by aberrant lymphocyte activity. The whole blood mRNA transcriptome was measured for 99 untreated MS patients: 43 primary progressive MS, 20 secondary progressive MS, 36 relapsing remitting MS and 45 age-matched healthy controls. The ANZgene Multiple Sclerosis Genetics Consortium genotyped more than 300 000 SNPs for 115 of these samples. Transcription from genes on translational regulation, oxidative phosphorylation, immune synapse and antigen presentation pathways was markedly increased in all forms of MS. Expression of genes tagging T cells was also upregulated (P < 10(-12)) in MS. A T cell gene signature predicts disease state with a concordance index of 0.79 with age and gender as co-variables, but the signature is not associated with clinical course or disability. The ANZgene genome wide association screen identified two novel regions with genome wide significance: one encoding the T cell co-stimulatory molecule, CD40; the other a region on chromosome 12q13-14. The CD40 haplotype associated with increased MS susceptibility has decreased gene expression in MS (P < 0.0007). The second MS susceptibility region includes 17 genes on 12q13-14 in tight linkage disequilibrium. Of these, only 13 are expressed in leukocytes, and of these the expression of one, FAM119B, is much lower in the susceptibility haplotype (P < 10(-14)). Overall, these data indicate dysregulation of T cells can be detected in the whole blood of untreated MS patients, and supports targeting of activated T cells in therapy for all forms of MS.


Asunto(s)
Antígenos CD40/genética , Cromosomas Humanos Par 12/genética , Regulación de la Expresión Génica/genética , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/fisiopatología , ARN Mensajero/sangre , Linfocitos T/metabolismo , Presentación de Antígeno/genética , Perfilación de la Expresión Génica , Genotipo , Haplotipos/genética , Humanos , Desequilibrio de Ligamiento , Esclerosis Múltiple/genética , Fosforilación Oxidativa
2.
J Immunol ; 184(5): 2512-7, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20097866

RESUMEN

Common genetic variants of IL-7 receptor alpha (IL-7Ralpha) have recently been shown to affect susceptibility to multiple sclerosis (MS) and type 1 diabetes, and survival following bone marrow transplantation. Transcription of the gene produces two dominant isoforms, with or without exon 6, which code for membrane-bound or soluble IL-7Ralpha, respectively. The haplotypes produce different isoform ratios. We have tested IL-7Ralpha mRNA expression in cell subsets and in models of T cell homeostasis, activation, tolerance, and differentiation into regulatory T cell/Th1/Th2/Th17, memory, and dendritic cells (DCs) under the hypothesis that the conditions in which haplotype differences are maximal are those likely to be the basis for their association with disease pathogenesis. Maximal differences between haplotypes were found in DCs, where the ligand is mainly thymic stromal lymphopoietin (TSLP). The MS-protective haplotype produces a much lower ratio of soluble to membrane-bound receptor, and so potentially, DCs of this haplotype are more responsive to TSLP. The TSLP/IL-7Ralpha interaction on DCs is known to be critical for production of thymic regulatory T cells, and reduced production of these cells in MS susceptibility haplotypes may be a basis for its association with this disease. IL-7Ralpha mRNA expression varies greatly through cell differentiation so that it may be a useful marker for cell states. We also show that serum levels of soluble receptor are much higher for the MS susceptibility haplotype (p = 4 x 10(-13)). Because signaling through IL-7Ralpha controls T cell regulation, this haplotype difference is likely to affect the immunophenotype and disease pathogenesis.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Células Dendríticas/metabolismo , Perfilación de la Expresión Génica , Haplotipos , Receptores de Interleucina-7/genética , Empalme Alternativo , Linfocitos T CD4-Positivos/citología , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/citología , Ensayo de Inmunoadsorción Enzimática , Femenino , Genotipo , Homeostasis/genética , Humanos , Interleucina-17/metabolismo , Masculino , Esclerosis Múltiple/genética , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Interleucina-7/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T Colaboradores-Inductores/citología , Linfocitos T Colaboradores-Inductores/metabolismo , Células TH1/citología , Células TH1/metabolismo , Células Th2/citología , Células Th2/metabolismo , Linfopoyetina del Estroma Tímico
3.
Mol Cell Ther ; 2: 11, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-26056580

RESUMEN

BACKGROUND: Although the host gene expression in the context of HIV has been explored by several studies, it remains unclear how HIV is able to manipulate and subvert host gene machinery before and after highly active antiretroviral therapy (HAART) in the same individual. In order to define the underlying pharmaco-genomic basis of HIV control during HAART and genomic basis of immune deterioration prior to HAART initiation, we performed a genome-wide expression analysis using primary peripheral blood mononuclear cells (PBMC) derived from 14 HIV + subjects pre-highly active antiretroviral therapy (HAART) (time point-1 or TP1) with detectable plasma viremia and post-HAART (time point-2 or TP2) with effective control of plasma viremia (<40 HIV RNA copies/mL of plasma). METHODS: Genomic RNA extracted from the PBMCs was used in microarray analysis using HT-12V3 Illumina chips. Illumina®BeadStudio Software was used to obtain differentially expressed (DE) genes. Only the genes with p value <0.01 and FDR of <5% were considered for analysis. Pathway analysis was performed in MetaCore™ to derive functional annotations. Functionally significant genes were validated by qRT-PCR. RESULTS: Between TP1 and TP2, 234 genes were differentially expressed (DE). During viremic phase (TP1), there was an orchestrated and coordinated up-regulation of immune, inflammation and antiviral genes, consistent with HIV infection and immune activation, which comprised of genes mainly involved in antiviral action of interferons and their signalling. In contrast, the therapy-mediated control phase (TP2) showed systematic down-regulation of these pathways, suggesting that the reduction in plasma viremia with HAART has a considerable influence on reducing the immune activation, thereby implying a definitive role of HIV in subverting the human gene machinery. CONCLUSIONS: This is the first study to show the evidence for the differential regulation of gene expression between the untreated and treated time points, suggesting that gene expression is a consequence of cellular activation during plasma viremia. Affirmation to these observations comes from down-modulation of genes involved in cellular activation and inflammation upon initiation of HAART coinciding with below detectable levels of plasma viremia.

4.
PLoS One ; 5(5): e10484, 2010 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-20463963

RESUMEN

Interferon beta (IFNbeta) is the most common immunomodulatory treatment for relapsing-remitting multiple sclerosis (RRMS). However, some patients fail to respond to treatment. In this study, we identified putative clinical response markers in the serum and plasma of people with multiple sclerosis (MS) treated with IFNbeta. In a discovery-driven approach, we use 2D-difference gel electrophoresis (DIGE) to identify putative clinical response markers and apply power calculations to identify the sample size required to further validate those markers. In the process we have optimized a DIGE protocol for plasma to obtain cost effective and high resolution gels for effective spot comparison. APOA1, A2M, and FIBB were identified as putative clinical response markers. Power calculations showed that the current DIGE experiment requires a minimum of 10 samples from each group to be confident of 1.5 fold difference at the p<0.05 significance level. In a complementary targeted approach, Cytometric Beadarray (CBA) analysis showed no significant difference in the serum concentration of IL-6, IL-8, MIG, Eotaxin, IP-10, MCP-1, and MIP-1alpha, between clinical responders and non-responders, despite the association of these proteins with IFNbeta treatment in MS.


Asunto(s)
Electroforesis en Gel Bidimensional/métodos , Interferón beta/uso terapéutico , Esclerosis Múltiple/sangre , Esclerosis Múltiple/tratamiento farmacológico , Adulto , Biomarcadores/sangre , Quimiocina CCL11/sangre , Demografía , Femenino , Citometría de Flujo , Humanos , Interleucina-6/sangre , Masculino , Persona de Mediana Edad , Tamaño de la Muestra , Resultado del Tratamiento
5.
PLoS One ; 5(8): e12132, 2010 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-20711463

RESUMEN

It is well established that Multiple Sclerosis (MS) is an immune mediated disease. Little is known about what drives the differential control of the immune system in MS patients compared to unaffected individuals. MicroRNAs (miRNAs) are small non-coding nucleic acids that are involved in the control of gene expression. Their potential role in T cell activation and neurodegenerative disease has recently been recognised and they are therefore excellent candidates for further studies in MS. We investigated the transcriptome of currently known miRNAs using miRNA microarray analysis in peripheral blood samples of 59 treatment naïve MS patients and 37 controls. Of these 59, 18 had a primary progressive, 17 a secondary progressive and 24 a relapsing remitting disease course. In all MS subtypes miR-17 and miR-20a were significantly under-expressed in MS, confirmed by RT-PCR. We demonstrate that these miRNAs modulate T cell activation genes in a knock-in and knock-down T cell model. The same T cell activation genes are also up-regulated in MS whole blood mRNA, suggesting these miRNAs or their analogues may provide useful targets for new therapeutic approaches.


Asunto(s)
Regulación de la Expresión Génica , Activación de Linfocitos/genética , MicroARNs/genética , Esclerosis Múltiple/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Femenino , Redes Reguladoras de Genes , Humanos , Células Jurkat , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/sangre , Esclerosis Múltiple/inmunología
6.
Mol Neurodegener ; 5: 27, 2010 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-20573273

RESUMEN

BACKGROUND: The pathogenesis of HIV-associated dementia (HAD) is poorly understood. To date, detailed proteomic fingerprinting directly from autopsied brain tissues of HAD and HIV non-dementia patients has not been performed. RESULT: Here, we have analyzed total proteins from the frontal cortex of 9 HAD and 5 HIV non-dementia patients. Using 2-Dimensional differential in-gel electrophoresis (2-DIGE) to analyze the brain tissue proteome, 76 differentially expressed proteins (p < 0.05; fold change>1.25) were identified between HAD and HIV non-dementia patients, of which 36 protein spots (based on 3D appearance of spots on the images) were chosen for the mass spectrometry analysis. The large majority of identified proteins were represented in the energy metabolic (mitochondria) and signal transduction pathways. Furthermore, over 90% of the protein candidates are common to both HAD and other non-viral neurodegenerative disease, such as Alzheimer's disease. The data was further validated using specific antibodies to 4 proteins (CA2, GS, CKMT and CRMP2) by western blot (WB) in the same samples used for 2D-DIGE, with additional confirmation by immunohistochemitsry (IHC) using frontal lobe tissue from different HAD and HIV+ non-dementia patients. The validation for all 4 antibodies by WB and IHC was in concordance with the DIGE results, lending further credence to the current findings. CONCLUSION: These results suggest not only convergent pathogenetic pathways for the two diseases but also the possibility of increased Alzheimer's disease (AD) susceptibility in HAD patients whose life expectancy has been significantly increased by highly active antiretroviral therapy.

7.
PLoS One ; 5(12): e14176, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21152067

RESUMEN

BACKGROUND: Several lines of evidence suggest that transcription factors are involved in the pathogenesis of Multiple Sclerosis (MS) but complete mapping of the whole network has been elusive. One of the reasons is that there are several clinical subtypes of MS and transcription factors that may be involved in one subtype may not be in others. We investigate the possibility that this network could be mapped using microarray technologies and contemporary bioinformatics methods on a dataset derived from whole blood in 99 untreated MS patients (36 Relapse Remitting MS, 43 Primary Progressive MS, and 20 Secondary Progressive MS) and 45 age-matched healthy controls. METHODOLOGY/PRINCIPAL FINDINGS: We have used two different analytical methodologies: a non-standard differential expression analysis and a differential co-expression analysis, which have converged on a significant number of regulatory motifs that are statistically overrepresented in genes that are either differentially expressed (or differentially co-expressed) in cases and controls (e.g., V$KROX_Q6, p-value <3.31E-6; V$CREBP1_Q2, p-value <9.93E-6, V$YY1_02, p-value <1.65E-5). CONCLUSIONS/SIGNIFICANCE: Our analysis uncovered a network of transcription factors that potentially dysregulate several genes in MS or one or more of its disease subtypes. The most significant transcription factor motifs were for the Early Growth Response EGR/KROX family, ATF2, YY1 (Yin and Yang 1), E2F-1/DP-1 and E2F-4/DP-2 heterodimers, SOX5, and CREB and ATF families. These transcription factors are involved in early T-lymphocyte specification and commitment as well as in oligodendrocyte dedifferentiation and development, both pathways that have significant biological plausibility in MS causation.


Asunto(s)
Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Esclerosis Múltiple/sangre , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/metabolismo , Oligodendroglía/citología
8.
PLoS One ; 5(10): e13454, 2010 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-21049023

RESUMEN

We conducted an association study across the human leukocyte antigen (HLA) complex to identify loci associated with multiple sclerosis (MS). Comparing 1927 SNPs in 1618 MS cases and 3413 controls of European ancestry, we identified seven SNPs that were independently associated with MS conditional on the others (each P ≤ 4 x 10(-6)). All associations were significant in an independent replication cohort of 2212 cases and 2251 controls (P ≤ 0.001) and were highly significant in the combined dataset (P ≤ 6 x 10(-8)). The associated SNPs included proxies for HLA-DRB1*15:01 and HLA-DRB1*03:01, and SNPs in moderate linkage disequilibrium (LD) with HLA-A*02:01, HLA-DRB1*04:01 and HLA-DRB1*13:03. We also found a strong association with rs9277535 in the class II gene HLA-DPB1 (discovery set P = 9 x 10(-9), replication set P = 7 x 10(-4), combined P = 2 x 10(-10)). HLA-DPB1 is located centromeric of the more commonly typed class II genes HLA-DRB1, -DQA1 and -DQB1. It is separated from these genes by a recombination hotspot, and the association is not affected by conditioning on genotypes at DRB1, DQA1 and DQB1. Hence rs9277535 represents an independent MS-susceptibility locus of genome-wide significance. It is correlated with the HLA-DPB1*03:01 allele, which has been implicated previously in MS in smaller studies. Further genotyping in large datasets is required to confirm and resolve this association.


Asunto(s)
Predisposición Genética a la Enfermedad , Antígenos HLA-DP/genética , Esclerosis Múltiple/genética , Polimorfismo de Nucleótido Simple , Alelos , Secuencia de Bases , Estudios de Casos y Controles , Estudios de Cohortes , Dosificación de Gen , Cadenas beta de HLA-DP
9.
J Interferon Cytokine Res ; 28(9): 529-39, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18715196

RESUMEN

Multiple sclerosis (MS) is a complex autoimmune disease characterized by the destruction of the myelin sheath of neurons. Interferon beta (IFN-beta) is currently the major drug used to treat MS. Some patients fail to respond to this treatment, in some cases due to the development of neutralizing antibodies (NAb) to IFN-beta. We used microarray analysis and RT-PCR to measure gene expression in whole blood, 9-15 h postinjection, in patients with and without NAbs to IFN-beta. The canonical marker of biological response to IFN-beta, myxovirus resistance protein A, was upregulated in all NAb- patients while remaining unchanged in NAb+ patients. Genes functioning in immune response pathways were dominant in the set of differentially expressed genes: 73 immune response genes were identified as upregulated and 29 genes were identified as downregulated. B-cell activating factor (BAFF) is a strong candidate marker for biological and clinical response as well as for predisposition to NAb development. We demonstrate that it is responsive to IFN-beta in vitro and in vivo, and that its soluble form is elevated in serum from NAb- but not NAb+ patients. We conclude BAFF is a good biomarker for IFN-beta response, and requires further studies to determine its value as a marker for clinical response and NAb predisposition.


Asunto(s)
Factor Activador de Células B/sangre , Interferón beta/uso terapéutico , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/inmunología , Formación de Anticuerpos/genética , Factor Activador de Células B/genética , Biomarcadores/sangre , Perfilación de la Expresión Génica , Haplotipos/genética , Humanos , Esclerosis Múltiple/sangre , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA