Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Environ Geochem Health ; 46(5): 172, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592578

RESUMEN

Advancement in bioinspired alloy nanomaterials has a crucial impact on fuel cell applications. Here, we report the synthesis of PtPd alloy nanoclusters via the hydrothermal method using Piper longum extract, representing a novel and environmentally friendly approach. Physicochemical characteristics of the synthesized nanoclusters were investigated using various instrumentation techniques, including X-ray photoelectron spectroscopy, X-ray diffraction, and High-Resolution Transmission electron microscopy. The electrocatalytic activity of the biogenic PtPd nanoclusters towards the oxidation of formic acid and methanol was evaluated chronoamperometry and cyclic voltammetry studies. The surface area of the electrocatalyst was determined to be 36.6 m2g-1 by Electrochemical Surface Area (ECSA) analysis. The biologically inspired PtPd alloy nanoclusters exhibited significantly higher electrocatalytic activity compared to commercial Pt/C, with specific current responses of 0.24 mA cm - 2 and 0.17 mA cm - 2 at synthesis temperatures of 180 °C and 200 °C, respectively, representing approximately four times higher oxidation current after 120 min. This innovative synthesis approach offers a promising pathway for the development of PtPd alloy nanoclusters with enhanced electrocatalytic activity, thereby advancing fuel cell technology towards a sustainable energy solution.


Asunto(s)
Formiatos , Metanol , Piper , Aleaciones , Extractos Vegetales
2.
Environ Geochem Health ; 46(5): 156, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592524

RESUMEN

This study presents a facile preparation and durable amorphous Fe and Al-based MOF nanoplate (AlFe-BTC MOFs) catalyst with notable stability in Fenton reactions. Rigorous characterization using XRD, HR-TEM, and BET confirms the amorphous nature of the synthesized AlFe-BTC MOFs, revealing mesopores (3.4 nm diameter), a substantial surface area (232 m2/g), and a pore volume of 0.69 cc/g. XPS analysis delineates distinct Al2p and Fe2p binding energy values, signifying specific chemical bonding. FE-SEM elemental mapping elucidates the distinctive distribution of Fe and Al within the framework of AlFe-BTC MOFs. In catalytic activity testing, the amorphous AlFe-BTC MOFs exhibited outstanding performance, achieving complete degradation of Methylene blue (MB) dye and 78% TOC removal over 45 min of treatment under mild reaction conditions. The catalyst's durability was assessed, revealing about 75% TOC removal and complete dye decomposition over five successive recycles, with less than 1 mg/L of Fe and Al leaching. UV-Vis spectra revealed the destruction of MB dye over multiple recycling studies. Based on this finding, the amorphous AlFe-BTC MOF nanoplates emerge as a promising solution for efficient dye removal from industrial wastewater, underscoring their potential in advanced environmental remediation processes.


Asunto(s)
Restauración y Remediación Ambiental , Estructuras Metalorgánicas , Industrias , Hierro , Azul de Metileno
3.
Environ Res ; 223: 115403, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36754108

RESUMEN

The design and development of eco-friendly fabrication of cost-effective electrochemical nonenzymatic biosensors with enhanced sensitivity and selectivity are one of the emerging area in nanomaterial and analytical chemistry. In this aspect, we developed a facile fabrication of tertiary nanocomposite material based on cobalt and polymelamine/nitrogen-doped graphitic porous carbon nanohybrid composite (Co-PM-NDGPC/SPE) for the application as a nonenzymatic electrochemical sensor to quantify glucose in human blood samples. Co-PM-NDGPC/SPE nanocomposite electrode fabrication was achieved using a single-step electrodeposition method under cyclic voltammetry (CV) technique under 1 M NH4Cl solution at 20 constitutive CV cycles (sweep rate 20 mV/s). Notably, the fabricated nonenzymatic electroactive nanocomposite material exhibited excellent electrocatalytic sensing towards the quantification of glucose in 0.1 M NaOH over a wide concentration range from 0.03 to 1.071 mM with a sensitive limit of detection 7.8 µM. Moreover, the Co-PM-NDGPC nanocomposite electrode with low charge transfer resistance (Rct∼81 Ω) and high ionic diffusion indicates excellent stability, reproducibility, and high sensitivity. The fabricated nanocomposite materials exhibit a commendable sensing response toward glucose molecules present in the blood serum samples recommends its usage in real-time applications.


Asunto(s)
Grafito , Nanocompuestos , Humanos , Carbono/química , Glucemia , Cobalto , Porosidad , Nitrógeno , Reproducibilidad de los Resultados , Automonitorización de la Glucosa Sanguínea , Técnicas Electroquímicas/métodos , Glucosa , Grafito/química , Nanocompuestos/química
4.
Environ Res ; 219: 115106, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36574795

RESUMEN

Heavy metal ion pollution harms human health and the environment and continues to worsen. Here, we report the synthesis of boron (B), phosphorous (P), nitrogen (N), and sulfur (S) co-doped carbon dots (BP/NS-CDs) by a one-step facile hydrothermal process. The optimum synthetic parameters are of 180 °C temperature, 12 h reaction time and 15% of PBA mass. The as-synthesized BP/NS-CDs exhibits excellent water solubility, strong green photoluminescence (PL) at 510 nm, and a high quantum yield of 22.4%. Moreover, BP/NS-CDs presented high monodispersity (7.2 ± 0.45 nm), excitation-dependent emission, PL stability over large pH, and high ionic strength. FTIR, XRD, and XPS are used to confirm the successful B and P doping of BP/NS-CDs. BP/NS-CD photoluminescent probes are selectively quenched by Cu2+ and Fe3+ ions but showed no response to the presence of other metal cations. The PL emission of BP/NS-CDs exhibited a good linear correlation with Cu2+ and Fe3+ concentrations with detection limits of 0.18 µM and 0.27 µM for Cu2+ and Fe3+, respectively. Furthermore, the HCT116 survival cells kept at 99.4 ± 1.3% and cell imaging capability, when the BP/NS-CDs concentration is up to 300 µg/mL by MTT assay. The proposed sensor is potential applications for the detection of Cu2+ and Fe3+ ions in environmental water samples.


Asunto(s)
Carbono , Azufre , Humanos , Temperatura , Iones , Agua , Nitrógeno
5.
Environ Res ; 224: 115402, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36764433

RESUMEN

In recent years, silicon nanoparticles (Si NPs) have been explored as a promising alternative to traditional organic fluorophores in optical sensing and bioimaging applications owing to their exceptional optical properties and negligible toxicity. In this study, water-dispersible Si NPs were prepared from a 3-aminopropyl trimethoxysilane precursor using a facile one-pot process. The as-prepared Si NPs exhibited excitation-wavelength-dependent fluorescence properties and bright green fluorescence at 530 nm upon excitation at 420 nm. The fluorescence properties of Si NPs remained unperturbed under various physiological conditions, such as varying pH, ionic strength, and incubation time. A sensitive fluorometric turn-off sensor for cyanide ion (CN-) detection was devised based on the unique fluorescence properties of Si NPs. The Si NPs-based detection assay showed a good linear response toward CN- ranging between 0 and 33 µM, with a limit of detection as low as 0.90 nM. Caenorhabditis elegans is used as a model organism to evaluate the in vivo toxicity and molecular imaging capability of Si NPs.


Asunto(s)
Nanopartículas , Silicio , Animales , Caenorhabditis elegans , Cianuros , Nanopartículas/química , Colorantes Fluorescentes/química
6.
Environ Res ; 216(Pt 3): 114705, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36328227

RESUMEN

In this study, the sol-gel technique was used to develop Cobalt Sulfur codoped Titanium Dioxide (Co-S codoped TiO2) photocatalysts. For structural analysis of the prepared resultant TiO2 samples, XRD, FTIR, UV-Vis DRS, SEM, HR-TEM and EDX measurements were used to describe the produced photocatalysts. The characterization findings indicate that the synthesized nanoparticles possessed great crystallinity, high purity, and superior optical characteristics. For the methylene blue (MB) degradation process, Co-S codoped TiO2 nanoparticles were tested for their photocatalytic degradation performance. The Co-S codoped TiO2 nanoparticles had improved catalytic activity when compared with pure, Co-doped, S-doped TiO2 and decomposed 93% of MB in 120 min. When compared to pure and doped TiO2, the catalysts of Co-S codoped TiO2 showed a synergistic effect and improved the performance of the catalysts. Furthermore, the antibacterial applications of synthesized Co-S codoped TiO2 nanoparticles was studied against E. coli (Gram negative) and S. aureus (Gram positive) bacteria and exhibited strong antibacterial activity against the selected strains.


Asunto(s)
Cobalto , Escherichia coli , Staphylococcus aureus , Titanio/química , Luz , Catálisis , Azufre/química , Azufre/farmacología , Azul de Metileno , Antibacterianos/farmacología
7.
Environ Res ; 206: 112589, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-34929186

RESUMEN

This study reports a facile green preparation of self-assembled multi-functional carbon quantum dots (CQDs) via direct pyrolysis technique coupled with microwave-assisted synthesis using Ziziphus Mauritiana stone biomass (as a bio-resource precursor). The synthesized multi-functional CQDs was characterized using FT-IR, XRD, XPS, TEM, and fluorescence spectroscopy techniques. The results exhibit that the prepared CQDs are spherical-shaped with an average diameter of 2-4 nm and showed bright bluish-green emissions property with stable dispersion and high photostability in the aqueous medium. Furthermore, the emission properties of CQDs were examined by quenched with ammonia (NH3) and other molecules in aqueous media. Results indicated that the developed CQDs showed effective fluorescent for the selective and sensitive detection (sensor) of NH3 with a detection limit of 10 nM. Thus, the presented procedure is a simple, low-cost, efficient, chemical-free synthesis of CQDs and can be applied as selective and sensitive (sensor) monitoring of NH3 concentration in aquatic environmental samples.


Asunto(s)
Puntos Cuánticos , Amoníaco , Carbono/química , Microondas , Puntos Cuánticos/química , Espectroscopía Infrarroja por Transformada de Fourier , Agua
8.
Environ Res ; 211: 113012, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35231460

RESUMEN

Design and development of inexpensive, portable, and eco-friendly electrochemical non-enzymatic sensors with high selectivity and sensitivity is pivotal in analytical chemistry. In this regard, we have developed a highly porous graphitic-activated carbon (GAC, derived from tamarind fruit shell biomass) coated iron oxide (Fe2O3) nanocomposite (Fe2O3/GAC) for the efficient detection of rutin (vitamin p). Fe2O3/GAC nanocomposite was prepared using a facile green synthesis method and thoroughly characterized using SEM, XRD, and XPS techniques. As-prepared Fe2O3/GAC nanocomposite was deposited over a screen printed electrode (SPE) to fabricate Fe2O3/GAC/SPE and utilized as a non-enzymatic sensor for the electrochemical determination of rutin in food and environmental samples. The modified electrode was characterized using cyclic voltammetry and electrochemical impedance spectroscopy techniques, which witnessed the excellent conductivity of the developed sensor. The fabricated Fe2O3/GAC/SPE nanocomposite exhibited a set of redox peaks in the presence of rutin, corresponding to the electrochemical redox feature of rutin (rutin to 3',4'-diquinone). Further, the modified electrode displayed excellent electrocatalytic characteristics towards the oxidation of rutin, based on which a differential pulse voltammetry-based sensor was developed for rutin determination. The developed non-enzymatic sensor has shown prominent performance towards rutin detection in a wide linear range from 0.1 to 130 µM with an excellent detection limit of 0.027 µM. The enhanced electrocatalytic response could be ascribed to the synergistic effect of Fe2O3 and GAC on the developed probe. Moreover, the developed sensor was successfully utilized for real-time detection of rutin in various samples.


Asunto(s)
Grafito , Nanocompuestos , Biomasa , Técnicas Electroquímicas/métodos , Compuestos Férricos , Nanocompuestos/química , Porosidad , Rutina , Vitaminas
9.
Mar Drugs ; 20(12)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36547880

RESUMEN

The controlled-release characteristic of drug delivery systems is utilized to increase the residence time of therapeutic agents in the human body. This study aimed to formulate and characterize salsalate (SSL)-loaded chitosan nanoparticles (CSNPs) prepared using the ionic gelation method and to assess their in vitro release and antibacterial and antibiofilm activities. The optimized CSNPs and CSNP-SSL formulation were characterized for particle size (156.4 ± 12.7 nm and 132.8 ± 17.4 nm), polydispersity index (0.489 ± 0.011 and 0.236 ± 132 0.021), zeta potential (68 ± 16 mV and 37 ± 11 mV), and entrapment efficiency (68.9 ± 2.14%). Physicochemical features of these nanoparticles were characterized using UV-visible and Fourier transform infrared spectroscopy and X-ray diffraction pattern. Scanning electron microscopy studies indicated that CSNPs and CSNP-SSL were spherical in shape with a smooth surface and their particle size ranged between 200 and 500 nm. In vitro release profiles of the optimized formulations showed an initial burst followed by slow and sustained drug release after 18 h (64.2 ± 3.2%) and 48 h (84.6 ± 4.23%), respectively. Additionally, the CSNPs and CSNP-SSL nanoparticles showed a sustained antibacterial action against Staphylococcus aureus (15.7 ± 0.1 and 19.1 ± 1.2 mm) and Escherichia coli (17.5 ± 0.8 and 21.6 ± 1.7 243 mm). Interestingly, CSNP-SSL showed better capability (89.4 ± 1.2% and 95.8 ± 0.7%) than did CSNPs in inhibiting antibiofilm production by Enterobacter tabaci (E2) and Klebsiella quasipneumoniae (SC3). Therefore, CSNPs are a promising dosage form for sustained drug delivery and enhanced antibacterial and antibiofilm activity of SSL; these results could be translated into increased patient compliance.


Asunto(s)
Quitosano , Nanopartículas , Humanos , Quitosano/química , Antibacterianos/farmacología , Nanopartículas/química , Biopelículas , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier
10.
J Mol Liq ; 366: 120292, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36101854

RESUMEN

During the current outbreak of the novel coronavirus disease 2019 (COVID-19), researchers have examined several antiviral drugs with the potential to inhibit the proliferation of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The antiviral drug acyclovir (AVR), which is used to treat COVID-19, in complex with methyl-ß-cyclodextrin (Mß-CD) was examined in the solution and solid phases. UV-visible and fluorescence spectroscopic analyses confirmed that the guest (AVR) was included inside the host (Mß-CD) cavity. A solid inclusion complex of AVR was prepared by co-precipitation, physical mixing, kneading, and bath sonication methods at a 1:1 ratio of Mß-CD:AVR. The prepared Mß-CD:AVR inclusion complex was characterized using Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) analysis. Phase solubility studies indicated the Mß-CD:AVR inclusion complex exhibited a higher stability constant and linear enhancement in AVR solubility with increasing Mß-CD concentrations. In silico analysis of the Mß-CD/AVR inclusion complex confirmed that AVR drugs show potential as inhibitors of SARS-CoV-2 3C-like protease (3CLpro) receptors. Results obtained using the PatchDock and FireDock servers indicated that the most favorable docking ligand was Mß-CD:AVR, which interacted with SARS-CoV-2 (3CLPro) protease inhibitors with high geometric shape complementarity scores (2522 and 5872) and atomic contact energy (-313.77 and -214.70 kcal mol-1). Our results suggest that the Mß-CD/AVR inclusion complex inhibits the main protease of SARS-CoV-2, although further wet-lab experiments are needed to verify these findings.

11.
Environ Res ; 200: 111493, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34129868

RESUMEN

The present research work reports the biosynthesis of hydroxyapatite (HAp) from eggshells and green synthesis of HAp from eggshells with incorporation of Piper betel leaf extract (PBL-HAp) using microwave conversion method. Although there are several works on synthesis of HAp from eggshells and other calcium and phosphorus rich substrates, the incorporation of herbal extract with HAp to promote antimicrobial and antibiofilm activity is less explored and reported. This research work highlights a simple and cost-effective method for development of antimicrobial biomaterials by combining the concepts of waste management, biomaterial science, and herbal medicine. In the present study, characterization of synthesized HAp was applied by X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, Proton Nuclear Magnetic Resonance (1H NMR) spectroscopy, and morphological analysis using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The characterization results indicated that the prepared HAp and PBL-HAp were pure b-type carbonated HAp. The PBL-HAp was checked for its antibacterial activity using the well diffusion method and biofilm inhibitory activity by crystal violet assay against some common pathogens. The antibacterial activities against Staphylococcus aureus and biofilm inhibitory activities against Escherichia coli, Vibrio harveyi, Pseudomonas aeruginosa, and Staphylococcus aureus of Piper betel leaf extract coated HAp (PBL-HAp) were showed to be significant and offered a promising role for the development of potent dental biomaterials.


Asunto(s)
Durapatita , Piper , Animales , Antibacterianos/farmacología , Biopelículas , Cáscara de Huevo , Extractos Vegetales/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Vibrio , Difracción de Rayos X
12.
J Environ Manage ; 245: 409-417, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31163378

RESUMEN

Pharmaceutical-based contaminants are the major reasons for morbidity and mortality in aquatic animals and lead to several side effects and diseases in human community. Availability of proper, efficient, and cost-effective treatment technologies is still scarce. In this study, an efficient combined treatment technique (electrochemical oxidation and adsorption processes) was developed for the complete detoxification of most commonly used antibiotic, ciprofloxacin in aqueous solution. Electrochemical degradation of ciprofloxacin was performed using titanium-based tri-metal oxide mesh type anode, and the effective oxidative potential, electrolysis time, and pH for the degradation of ciprofloxacin were thoroughly evaluated. Sulfate, fluoride ions and toxic byproducts generated during electrochemical oxidation of ciprofloxacin were subsequently removed through a simple adsorption treatment using activated charcoal for 90 min. Further, the toxicity of the treated water was assessed with the nematode Caenorhabditis elegans species at different time intervals by observing the expressions of important stress-responsive genes viz., sod-3, hsp-16.2, ctl-1,2,3 and gst-4. The results exhibited that the combined process of electrochemical oxidation and adsorption treatment is simple, low-cost as well as effective to eliminate ciprofloxacin and its toxic byproducts in aqueous solution.


Asunto(s)
Ciprofloxacina , Contaminantes Químicos del Agua , Adsorción , Electrólisis , Oxidación-Reducción
13.
Int J Biol Macromol ; 281(Pt 3): 136460, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39389485

RESUMEN

Agricultural residues are one of the most cost-effective and readily accessible carbon resources for producing commercially significant enzymes. Several enzymes have been used in different industries like pharmaceuticals, foods, textiles, and dyes that can be generated by various species of microbes found in waste from agriculture. The current research investigated laccase production by Aspergillus oryzae utilizing agricultural wastes. Physical and chemical properties, including pH, temperature, sucrose, yeast extract, and copper sulfate levels, were optimized. The utilization of the response surface methodology along with the centralized composite design method, which assesses multiple media parameters and utilizes a two-level experimental approach, aids in determining the variable and its significance in increasing production quality. The centralized composite design enhancement showed that the optimal conditions for highest laccase activity (623.16 U/mL) were pH 7.0, temperature 25 °C, corn cobs as substrate, sucrose (2.0 %), yeast extract (1.0 %), and copper sulfate (0.1 mM) level. The laccase enzyme was optimized using various pH, temperature, metal ions, and inhibitors combinations. The extracted laccase enzyme maximum activity was attained at pH 6.0 and 40 °C. The inclusion of divalent ions can enhance laccase activity, while the use of various inhibitors decreases laccase activity. Under various pH circumstances, the Aspergillus oryzae laccase enzyme can successfully degrade p-chlorophenol. The present study describes statistically validated optimal methodologies for enhancing laccase synthesis, leading to a laccase production technique that is simultaneously highly efficient and economically profitable, with possible use of p-chlorophenol degradation.

14.
Chemosphere ; 313: 137444, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36462566

RESUMEN

Heteroatom-doped photoluminescent (PL) carbon dots (CDs) have recently gained attention as optical sensors due to their excellent tunable properties. In this work, we propose a one-pot hydrothermal synthesis of PL nitrogen (N), sulfur (S), and phosphorus (P) co-doped carbon dots (NSP-CDs) using glutathione and phosphoric acid (H3PO4) as precursors. The synthesized NSP-CDs were characterized using different spectroscopic and microscopic techniques, including ultraviolet-visible (UV-Vis) spectroscopy, fluorescence spectroscopy, Fourier-transform infrared (FTIR), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analysis. The NSP-CDs exhibited excellent PL properties with green emission at 492 nm upon excitation at 417 nm, a high quantum yield of 26.7%, and dependent emission behavior. The as-prepared NSP-CDs were spherical with a well-monodispersed average particle size of 5.2 nm. Moreover, NSP-CDs demonstrate high PL stability toward a wider pH, high salt ionic strength, and various solvents. Furthermore, the NSP-CDs showed a three-state "off-on-off" PL response upon the sequential addition of Al3+ and Fe3+ ions, with a low limit of detection (LOD) of 10.8 nM for Al3+ and 50.7 nM for Fe3+. The NSP-CD sensor can construct an INHIBIT logic gate with Al3+ and Fe3+ ions as the chemical inputs and emissions as the output mode. Owing to an excellent tunable PL property and biocompatibility, the NSP-CDs were applied for sensing Al3+ and Fe3+ ions as well as live cell imaging. Furthermore, NSP-CDs were designed as PL sensors for detecting Al3+ and Fe3+ ions in real water show their potential application.


Asunto(s)
Carbono , Puntos Cuánticos , Carbono/química , Nitrógeno/química , Puntos Cuánticos/química , Azufre/química , Iones/química
15.
J Biomater Sci Polym Ed ; 34(6): 715-733, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36335475

RESUMEN

Hydrogel nanocomposites are attracting increasing attention in field of biology owing to their unique properties. The present work focuses on the fabrication and characterization of novel hydrogel nanocomposite systems in which silver nanoparticles (AgNPs) are embedded in a carrageenan (κ-CGN)-sodium alginate (SA) hydrogel. The performance of the prepared κ-CGN-SA hydrogel and κ-CGN-SA/AgNPs hydrogel nanocomposite was determined by UV-visible spectroscopy, FTIR, XRD, SEM, EDX spectrum, EDX mapping, and TEM analysis. Surface plasmon resonance at 428 nm confirmed the presence of AgNPs in the κ-CGN-SA hydrogel. The results indicate that AgNPs with an average diameter of 30 nm were uniformly dispersed in the κ-CGN-SA hydrogel matrix. The amount of Ag+ ion release kinetic from the κ-CGN-SA hydrogel matrix is very low, showing that AgNPs were well trapped within the κ-CGN-SA/AgNPs hydrogel nanocomposite. The high antibacterial activity of the κ-CGN-SA/AgNPs hydrogel nanocomposite was found to be 89.6 ± 1.4% and 91.4 ± 2.3% against the gram-positive S. aureus and the gram-negative E. coli, respectively. Moreover, the κ-CGN-SA/AgNPs hydrogel nanocomposite showed good biocompatibility by the MTT test. The novel κ-CGN-SA/AgNPs hydrogel nanocomposite low cytotoxicity and antibacterial efficacy is proposed as a potential candidate for biomedical applications.


Asunto(s)
Nanopartículas del Metal , Nanocompuestos , Nanogeles , Carragenina/química , Nanopartículas del Metal/química , Escherichia coli , Alginatos/química , Plata/química , Staphylococcus aureus , Antibacterianos/química , Hidrogeles/química , Nanocompuestos/química
16.
Int J Biol Macromol ; 241: 124546, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37086766

RESUMEN

A nanohybrid prepared from the lignocellulosic residue is a feasible approach to synthesize blue light emitting fluorescent doped TiO2 quantum dot nanocomposite (C-TiO2 QDs) by microwave techniques using Mandarin orange (Citrus reticulata) peel powder with titanium isopropoxide precursors. With a greater orange peel colloidal medium, the structure of the TiO2-NPs changed from a mixture of rutile and anatase phases to exclusively the anatase phase. The optical and morphological properties of as-prepared C-TiO2 QDs were characterized by HR-TEM, XRD, FT-IR, UV-visible, PL spectra, DLS, and Zeta potential techniques. The reaction condition was optimized by changing substrate composition, pH, and reaction time. C-TiO2 QDs exhibit outstanding stability at pH 7 and remain sustained for at least 180 days without aggregation. As prepared C-TiO2 QDs have distinct emission and excitation activities with an average particle size of 2.8 nm. Cell viability was performed on normal L929 cells, where it showed excellent biocompatibility (<90 %) even at the concentration of 200 µg/mL after 24 h treatment. Additionally, the synthesized C-TiO2 QDs were used with L929 cells as a fluorescent probe for bio-imaging applications. The results revealed that neither of the cell lines' morphologies had significantly changed, proving the biocompatibility of the synthetic C-TiO2 QDs.


Asunto(s)
Citrus sinensis , Puntos Cuánticos , Puntos Cuánticos/química , Microondas , Carbono , Espectroscopía Infrarroja por Transformada de Fourier , Titanio/química , Colorantes Fluorescentes
17.
Chemosphere ; 311(Pt 2): 137105, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36347355

RESUMEN

A novel aluminium (Al) and its active alloys are extensively been used in nearly all areas owing to their cost-effectiveness. But when it is subjected to an aqueous medium, gets corroded through a chemical response. In this paper, a novel framework was fabricated by copolymer coating over on Al and loaded with zinc via electro polymerization and electrodeposition method ([EDA- OPDA]Al@Zn). The as-fabricated composite has emerged for the sorption of Methylene Blue (MB) aqueous dye and Paracetomal drug (PAR). The as-fabricated composite framework has been categorized via IR spectra, FE-SEM images, and EDX spectra. The sorption progression was optimized for numerous prompting features like pH, contact time and impact of dosage. Based on kinetics data, the growth in QE value by an enhancement in temperature for adsorption and the higher r values shows the adsorption progression is a pseudo-second-order model. The thermodynamic constraints specify that the field of adsorbate is impulsive and typical endothermic process. Instead, the corrosion resistance of a composite in the 3.5% of NaCl. Solution was explored via EIS spectra and potentio-dynamic polarization. Depending on the observed features, it indicates that the [EDA-OPDA]Al@Zn framework provided fantastic corrosion resistance. So it is obvious that the as-synthesized framework is of multitasking, that it could be successfully performed for the exclusion of MB aqueous dye and PAR drug from the aqueous medium and it also withstands effectively in this corrosive medium.

18.
Int J Biol Macromol ; 244: 125329, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37307970

RESUMEN

The use of advanced electroactive catalysts enhances the performance of electrochemical biosensors in real-time biomonitoring and has received much attention owing to its excellent physicochemical and electrochemical possessions. In this work, a novel biosensor was developed based on the electrocatalytic activity of functionalized vanadium carbide (VC) material, including VC@ruthenium (Ru), VC@Ru-polyaniline nanoparticles (VC@Ru-PANI-NPs) as non-enzymatic nanocarriers for the fabrication of modified screen-printed electrode (SPE) to detect acetaminophen in human blood. As-prepared materials were characterized using SEM, TEM, XRD, and XPS techniques. Biosensing was carried out using cyclic voltammetry and differential pulse voltammetry techniques and has revealed imperative electrocatalytic activity. A quasi-reversible redox method of the over-potential of acetaminophen increased considerably compared with that at the modified electrode and the bare SPE. The excellent electrocatalytic behaviour of VC@Ru-PANI-NPs/SPE is attributed to its distinctive chemical and physical properties, including rapid electron transfer, striking á´«-á´« interface, and strong adsorptive capability. This electrochemical biosensor exhibits a detection limit of 0.024 µM, in a linear range of 0.1-382.72 µM with a reproducibility of 2.45 % relative standard deviation, and a good recovery from 96.69 % to 105.59 %, the acquired results ensure a better performance compared with previous reports. The enriched electrocatalytic activity of this developed biosensor is mainly credited to its high surface area, better electrical conductivity, synergistic effect, and abundant electroactive sites. The real-world utility of the VC@Ru-PANI-NPs/SPE-based sensor was ensured via the investigation of biomonitoring of acetaminophen in human blood samples with satisfactory recoveries.


Asunto(s)
Técnicas Biosensibles , Nanopartículas , Rutenio , Humanos , Acetaminofén/química , Vanadio , Reproducibilidad de los Resultados , Nanopartículas/química , Polímeros , Técnicas Electroquímicas , Electrodos
19.
Environ Pollut ; 293: 118556, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34813885

RESUMEN

Chicken poultry industry produces a vast amount of feather waste and is often disposed into landfills, creating environmental pollution. Therefore, we explored the valorization of chicken feather waste into lipids and keratinous sludge biomass. This study demonstrates the successful utilization of keratinous sludge biomass as a unique precursor for the facile preparation of novel keratinous sludge biomass-derived carbon-based molybdenum oxide (KSC@MoO3) nanocomposite material using two-step (hydrothermal and co-pyrolysis) processes. The surface morphology and electrochemical properties of as-prepared nanocomposite material were analyzed using HR-SEM, XRD, XPS, and cyclic voltammetric techniques. KSC@MoO3 nanocomposite exhibited prominent electrocatalytic behavior to simultaneously determine hydroquinone (HQ) and catechol (CC) in environmental waters. The as-prepared electrochemical sensor showed excellent performance towards the detection of HQ and CC with broad concentration ranges between 0.5-176.5 µM (HQ and CC), and the detection limits achieved were 0.063 µM (HQ) and 0.059 µM (CC). Furthermore, the developed modified electrode has exhibited excellent stability and reproducibility and was also applied to analyze HQ and CC in environmental water samples. Results revealed that chicken feather waste valorization could result in sustainable biomass conversion into a high-value nanomaterial to develop a cost-effective electrochemical environmental monitoring sensor and lipids for biofuel.


Asunto(s)
Hidroquinonas , Nanocompuestos , Animales , Carbono , Catecoles , Pollos , Plumas , Molibdeno , Óxidos , Reproducibilidad de los Resultados
20.
Chemosphere ; 272: 129801, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33581564

RESUMEN

Triclosan (TCS) is a common anti-microbial ingredient in pharmaceutical and personal care products. The usage of TCS was banned by the United States Food and Drug Administration (in 2016) due to its potential health risks. However, TCS has been frequently detected in the aquatic environment. Therefore, it is vital to design low-cost and highly efficient photocatalysts to enhance TCS's photocatalytic degradation in wastewater treatment to eliminate its toxicity to environmental health. In this study, we developed a highly efficient catalyst by incorporating lignin nanorods (LNRs) into graphitic carbon nitride (GCN) nanomaterials as green LNRs/GCN-based nanocomposite photocatalysts for the effective degradation of TCS in waters. LNRs/GCN nanosheets (NSs) and LNRs/GCN-NRs based nanocomposite materials were prepared using a simple wet-impregnation method. The surface morphology and optical properties of as-synthesized materials were well-characterized using FE-SEM, XRD, XPS, and UV-DRS. The photocatalyst (LNRs/GCN-NRs) material showed maximum TCS degradation efficiency of 99.9% and a high rate constant of 0.0661 min-1 under pH-10 with crucial reactive spices (OH and O2-), and excellent cycling performance (over five cycles) within 90 min of UV-light illumination. LNRs/GCN-NRs nanocomposite indicated enhanced photocatalytic performances for TCS degradation due to its strong synergistic effect between LNRs and GCN-NRs as bifunctional catalyst substrate morphology with efficient bandgap energy and accessible active sites compared to LNRs/GCN-NSs. Therefore, LNRs/GCN-NRs nanocomposite was observed to be a highly-active, low-cost, stable, eco-friendly, and efficient photocatalyst for complete degradation of TCS under UV-light irradiation.


Asunto(s)
Nanocompuestos , Nanotubos , Triclosán , Lignina , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA