Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Plant Cell ; 34(5): 1912-1932, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35171272

RESUMEN

Grain chalkiness reduces the quality of rice (Oryza sativa) and is a highly undesirable trait for breeding and marketing. However, the underlying molecular cause of chalkiness remains largely unknown. Here, we cloned the F-box gene WHITE-CORE RATE 1 (WCR1), which negatively regulates grain chalkiness and improves grain quality in rice. A functional A/G variation in the promoter region of WCR1 generates the alleles WCR1A and WCR1G, which originated from tropical japonica and wild rice Oryza rufipogon, respectively. OsDOF17 is a transcriptional activator that binds to the AAAAG cis-element in the WCR1A promoter. WCR1 positively affects the transcription of the metallothionein gene MT2b and interacts with MT2b to inhibit its 26S proteasome-mediated degradation, leading to decreased reactive oxygen species production and delayed programmed cell death in rice endosperm. This, in turn, leads to reduced chalkiness. Our findings uncover a molecular mechanism underlying rice chalkiness and identify the promising natural variant WCR1A, with application potential for rice breeding.


Asunto(s)
Endospermo , Oryza , Grano Comestible/genética , Endospermo/genética , Regulación de la Expresión Génica de las Plantas/genética , Homeostasis/genética , Oryza/genética , Oryza/metabolismo , Oxidación-Reducción
2.
Plant Biotechnol J ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38943653

RESUMEN

Grain chalkiness is an undesirable trait that negatively regulates grain yield and quality in rice. However, the regulatory mechanism underlying chalkiness is complex and remains unclear. We identified a positive regulator of white-belly rate (WBR). The WBR7 gene encodes sucrose synthase 3 (SUS3). A weak functional allele of WBR7 is beneficial in increasing grain yield and quality. During the domestication of indica rice, a functional G/A variation in the coding region of WBR7 resulted in an E541K amino acid substitution in the GT-4 glycosyltransferase domain, leading to a significant decrease in decomposition activity of WBR7A (allele in cultivar Jin23B) compared with WBR7G (allele in cultivar Beilu130). The NIL(J23B) and knockout line NIL(BL130)KO exhibited lower WBR7 decomposition activity than that of NIL(BL130) and NIL(J23B)COM, resulting in less sucrose decomposition and metabolism in the conducting organs. This caused more sucrose transportation to the endosperm, enhancing the synthesis of storage components in the endosperm and leading to decreased WBR. More sucrose was also transported to the anthers, providing sufficient substrate and energy supply for pollen maturation and germination, ultimately leading to an increase rate of seed setting and increased grain yield. Our findings elucidate a mechanism for enhancing rice yield and quality by modulating sucrose metabolism and allocation, and provides a valuable allele for improved rice quality.

3.
Opt Lett ; 49(13): 3749-3752, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38950258

RESUMEN

Underwater communication and positioning are essential for autonomous underwater vehicle (AUV) docking and formation. The traditional methods for communication and positioning are mainly independent from each other, increasing the redundancy and integration difficulty for AUVs. In this Letter, we demonstrate a real-time underwater wireless optical communication and positioning (UWOCP) integrated system. The LED array is adopted as a light source, and the pulse-position modulation (PPM) is used for a maximum transmission and sensing distance. By employing the silicon photomultiplier (SiPM) array, which consists of five SiPMs with different angles, the high sensitivity and ability to distinguish angles are obtained. Through calculating the relationship between the received pulse signal intensity of the five SiPMs, the pitch angle and yaw angle can be obtained. The experimental results in the pool show that the Ethernet bandwidth of 2.2 Mbps with an average angular error of 3.08° for one-dimensional positioning can be realized at a 50 m distance. To the best of our knowledge, this is the longest distance at which a real-time UWOCP system has been demonstrated. The proposed UWOCP system has the advantages of high sensitivity, computing efficiency, and compact structure, presenting great potential for underwater applications.

4.
Nucleic Acids Res ; 50(19): e109, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-35929067

RESUMEN

Genomes can be edited by homologous recombination stimulated by CRISPR/Cas9 [clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated peptide 9]-induced DNA double-strand breaks. However, this approach is inefficient for inserting or deleting long fragments in mammalian cells. Here, we describe a simple genome-editing method, termed transcription-coupled Cas9-mediated editing (TEd), that can achieve higher efficiencies than canonical Cas9-mediated editing (CEd) in deleting genomic fragments, inserting/replacing large DNA fragments and introducing point mutations into mammalian cell lines. We also found that the transcription on DNA templates is crucial for the promotion of homology-directed repair, and that tethering transcripts from TEd donors to targeted sites further improves editing efficiency. The superior efficiency of TEd for the insertion and deletion of long DNA fragments expands the applications of CRISPR for editing mammalian genomes.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Recombinación Homóloga/genética , Roturas del ADN de Doble Cadena , ADN/genética , Mamíferos/genética
5.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673733

RESUMEN

Grain size is a quantitative trait with a complex genetic mechanism, characterized by the combination of grain length (GL), grain width (GW), length to width ration (LWR), and grain thickness (GT). In this study, we conducted quantitative trait loci (QTL) analysis to investigate the genetic basis of grain size using BC1F2 and BC1F2:3 populations derived from two indica lines, Guangzhan 63-4S (GZ63-4S) and TGMS29 (core germplasm number W240). A total of twenty-four QTLs for grain size were identified, among which, three QTLs (qGW1, qGW7, and qGW12) controlling GL and two QTLs (qGW5 and qGL9) controlling GW were validated and subsequently fine mapped to regions ranging from 128 kb to 624 kb. Scanning electron microscopic (SEM) analysis and expression analysis revealed that qGW7 influences cell expansion, while qGL9 affects cell division. Conversely, qGW1, qGW5, and qGW12 promoted both cell division and expansion. Furthermore, negative correlations were observed between grain yield and quality for both qGW7 and qGW12. Nevertheless, qGW5 exhibited the potential to enhance quality without compromising yield. Importantly, we identified two promising QTLs, qGW1 and qGL9, which simultaneously improved both grain yield and quality. In summary, our results laid the foundation for cloning these five QTLs and provided valuable resources for breeding rice varieties with high yield and superior quality.


Asunto(s)
Mapeo Cromosómico , Grano Comestible , Oryza , Sitios de Carácter Cuantitativo , Oryza/genética , Oryza/crecimiento & desarrollo , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Fenotipo , Cromosomas de las Plantas/genética , Semillas/genética , Semillas/crecimiento & desarrollo
6.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38673973

RESUMEN

The quality of rice, evaluated using multiple quality-related traits, is the main determinant of its market competitiveness. In this study, two japonica rice varieties with significant differences in quality-related traits were used as parents to construct two populations, BC3F2 and BC3F2:3, with Kongyu131 (KY131) as the recurrent parent. A genetic linkage map was constructed using the BC3F2 population based on 151 pairs of SSR/InDel polymorphic markers selected between the parents. Grain-shape-related traits (grain length GL, grain width GW, and length-to-width ratio LWR), chalkiness-related traits (white-core rate WCR, white-belly rate WBR, white-back rate BR, and chalkiness rate CR), and amylose content (AC) were investigated in the two populations in 2017 and 2018. Except for BR and CR, the traits showed similar characteristics with a normal distribution in both populations. Genetic linkage analysis was conducted for these quality-related traits, and a total of 37 QTLs were detected in the two populations. Further validation was performed on the newly identified QTLs with larger effects, and three grain shape QTLs and four chalkiness QTLs were successfully validated in different environments. One repeatedly validated QTL, qWCR3, was selected for fine mapping and was successfully narrowed down to a 100 kb region in which only two genes, LOC_0s03g45210 and LOC_0s03g45320, exhibited sequence variations between the parents. Furthermore, the variation of LOC_Os03g45210 leads to a frameshift mutation and premature protein termination. The results of this study provide a theoretical basis for positional cloning of the qWCR3 gene, thus offering new genetic resources for rice quality improvement.


Asunto(s)
Mapeo Cromosómico , Ligamiento Genético , Oryza , Fenotipo , Sitios de Carácter Cuantitativo , Oryza/genética , Mapeo Cromosómico/métodos , Grano Comestible/genética , Cromosomas de las Plantas/genética , Genes de Plantas
7.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36614293

RESUMEN

Global food security has benefited from the development and promotion of the two-line hybrid rice system. Excellent eating quality determines the market competitiveness of hybrid rice varieties based on achieving the fundamental requirements of high yield and good adaptability. Developing sterile and restorer lines with improved quality for two-line hybrid breeding by editing quality genes with clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 is an efficient and practical alternative to the lengthy and laborious process of conventional breeding to improve rice quality. We edited Wx and OsBADH2 using CRISPR/Cas9 technology to produce both homozygous male sterile mutant lines and homozygous restorer mutant lines with Cas9-free. These mutants have a much lower amylose content while having a significantly higher 2-acetyl-1-pyrroline aroma content. Based on this, a fragrant glutinous hybrid rice was developed without too much effect on most agronomic traits. This study demonstrates the use of CRISPR/Cas9 in creating two-line fragrant glutinous hybrid rice by editing the components of the male sterile and the restorative lines.


Asunto(s)
Sistemas CRISPR-Cas , Oryza , Sistemas CRISPR-Cas/genética , Oryza/genética , Odorantes , Fitomejoramiento , Genes de Plantas , Edición Génica
8.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37833893

RESUMEN

Rice blast caused by Magnaporthe oryzae is one of the most serious rice diseases worldwide. The early indica rice thermosensitive genic male sterile (TGMS) line HD9802S has the characteristics of stable fertility, reproducibility, a high outcrossing rate, excellent rice quality, and strong combining ability. However, this line exhibits poor blast resistance and is highly susceptible to leaf and neck blasts. In this study, backcross introduction, molecular marker-assisted selection, gene chipping, anther culture, and resistance identification in the field were used to introduce the broad-spectrum blast-resistance gene R6 into HD9802S to improve its rice blast resistance. Six induction media were prepared by varying the content of each component in the culture medium. Murashige and Skoog's medium with 3 mg/L 2,4-dichlorophenoxyacetic acid, 2 mg/L 1-naphthaleneacetic acid, and 1 mg/L kinetin and N6 medium with 800 mg/L casein hydrolysate, 600 mg/L proline, and 500 mg/L glutamine could improve the callus induction rate and have a higher green seedling rate and a lower white seedling rate. Compared to HD9802S, two doubled haploid lines containing R6 with stable fertility showed significantly enhanced resistance to rice blast and no significant difference in spikelet number per panicle, 1000-grain weight, or grain shape. Our findings highlight a rapid and effective method for improving rice blast resistance in TGMS lines.


Asunto(s)
Herbicidas , Oryza , Reproducibilidad de los Resultados , Cinetina , Biomarcadores , Genes de Plantas , Oryza/genética
9.
Opt Express ; 30(10): 17140-17155, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-36221543

RESUMEN

In addition to requirements on increasing transmission distance and bitrate, the study of underwater wireless optical communication (UWOC) is also facing limitations and challenges, such as interference induced by background noise, demand of higher receiver sensitivity, and communication security issues. In this paper, we experimentally demonstrate a physical layer secure and noise-resistant UWOC system based on spectrum spread and encrypted orthogonal frequency division multiplexing (SSE-OFDM) modulation, transmission through a 14.2 m sediment circulating water tank. Firstly, experimental results show that the required optical power ratio of signal and noise light (OPR) for QPSK signal under BER threshold of 3.8×10-3 is around -5.77 dB for a spectrum spread factor (N) of 100, with a signal-to-noise ratio (SNR) improvement of 19.06 dB. Secondly, without the background noise interference, the receiver sensitivity is also improved from -50 dBm to -62.4 dBm by using the SSE-OFDM modulation, achieving a maximum attenuation length (AL) of 19.67. Thirdly, physical layer security of UWOC can also be realized, which suppresses the SNR of eavesdropper to -3.72 dB while improving SNR of the authorized receiver to 17.56 dB under the condition of no leakage of keys. Additionally, analytical expressions for SSE-OFDM based UWOC performance are also derived, which agree well with the experimental results. Based on the analytical expressions, the maximum secrecy capacity Cs for SSE-OFDM based UWOC system under eavesdropping can be obtained by optimizing the intentionally inserted artificial noise power ratio and the spectrum spread factor N.

10.
Theor Appl Genet ; 135(10): 3417-3431, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35941236

RESUMEN

KEY MESSAGE: We report the map-based cloning and functional characterization of SNG1, which encodes OsHXK3, a hexokinase-like protein that plays a pivotal role in controlling grain size in rice. Grain size is an important agronomic trait determining grain yield and appearance quality in rice. Here, we report the discovery of rice mutant short and narrow grain1 (sng1) with reduced grain length, width and weight. Map-based cloning revealed that the mutant phenotype was caused by loss of function of gene OsHXK3 that encodes a hexokinase-like (HKL) protein. OsHXK3 was associated with the mitochondria and was ubiquitously distributed in various organs, predominately in younger organs. Analysis of glucose (Glc) phosphorylation activities in young panicles and protoplasts showed that OsHXK3 was a non-catalytic hexokinase (HXK). Overexpression of OsHXK3 could not complement the Arabidopsis glucose insensitive2-1 (gin2-1) mutant, indicating that OsHXK3 lacked Glc signaling activity. Scanning electron microscopy analysis revealed that OsHXK3 affects grain size by promoting spikelet husk cell expansion. Knockout of other nine OsHXK genes except OsHXK3 individually did not change grain size, indicating that functions of OsHXKs have differentiated in rice. OsHXK3 influences gibberellin (GA) biosynthesis and homeostasis. Compared with wild type, OsGA3ox2 was significantly up-regulated and OsGA2ox1 was significantly down-regulated in young panicle of sng1, and concentrations of biologically active GAs were significantly decreased in young panicles of the mutants. The yield per plant of OsHXK3 overexpression lines (OE-4 and OE-35) was increased by 10.91% and 7.62%, respectively, compared to that of wild type. Our results provide evidence that an HXK lacking catalytic and sensory functions plays an important role in grain size and has the potential to increase yield in rice.


Asunto(s)
Oryza , Grano Comestible/genética , Grano Comestible/metabolismo , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Glucosa/metabolismo , Hexoquinasa/genética , Hexoquinasa/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Mol Breed ; 42(11): 68, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37313476

RESUMEN

Rice grain size is a key determinant of both grain yield and quality. In this study, we conducted QTL mapping on grain size using a recombinant inbred line (RIL) population derived from a cross between japonica variety Beilu130 (BL130) and indica variety Jin23B (J23B). A total of twenty-two QTL related to grain length (GL), grain width (GW), grain length-to-width ratio (LWR), grain thickness (GT), and thousand grain weight (TGW) were detected under two environments, and 14 of them were repeatedly detected. Two minor QTL, qTGW2b and qGL9, were validated and further delimited to regions of 631 kb and 272 kb, respectively. Parental sequence comparison of genes expressed in inflorescence in corresponding candidate regions identified frameshifts in the exons of LOC_Os02g38690 and LOC_Os02g38780, both of which encode protein phosphatase 2C-containing protein, and LOC_Os09g29930, which encodes a BIM2 protein. Scanning electron microscopy (SEM) analysis revealed that the increase of cell size rather than cell number caused the differences in grain size between NILs of qTGW2b and qGL9. Quantitative RT-PCR analysis showed that the expression levels of EXPA4, EXPA5, EXPA6, EXPB3, EXPB4, and EXPB7 were significantly different in both qTGW2b NILs and qGL9 NILs. Our results lay the foundation for the cloning of qTGW2b and qGL9, and provide genetic materials for the improvement of rice yield and quality. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01328-2.

12.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35955848

RESUMEN

Grain size is a key determinant of both grain weight and grain quality. Here, we report the map-based cloning of a novel quantitative trait locus (QTL), GLW7.1 (Grain Length, Width and Weight 7.1), which encodes the CCT motif family protein, GHD7. The QTL is located in a 53 kb deletion fragment in the cultivar Jin23B, compared with the cultivar CR071. Scanning electron microscopy analysis and expression analysis revealed that GLW7.1 promotes the transcription of several cell division and expansion genes, further resulting in a larger cell size and increased cell number, and finally enhancing the grain size as well as grain weight. GLW7.1 could also increase endogenous GA content by up-regulating the expression of GA biosynthesis genes. Yeast two-hybrid assays and split firefly luciferase complementation assays revealed the interactions of GHD7 with seven grain-size-related proteins and the rice DELLA protein SLR1. Haplotype analysis and transcription activation assay revealed the effect of six amino acid substitutions on GHD7 activation activity. Additionally, the NIL with GLW7.1 showed reduced chalkiness and improved cooking and eating quality. These findings provide a new insight into the role of Ghd7 and confirm the great potential of the GLW7.1 allele in simultaneously improving grain yield and quality.


Asunto(s)
Oryza , Alelos , Grano Comestible/genética , Oryza/genética , Oryza/metabolismo , Sitios de Carácter Cuantitativo
13.
Opt Express ; 29(15): 24525-24535, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34614695

RESUMEN

The Five-hundred-meter Aperture Spherical radio Telescope (FAST) located in Guizhou, China, is a very sensitive single dish telescope. Due to the large size of the telescope, optical fiber is used for the transmission of the 3-km astronomical signal from the telescope to the signal processing center. The optical fibers are suspended in the air above the telescope reflector, very easy to slide when the telescope feed cabin moves, resulting in phase drifts for the transmission signal. This phase drift has a negative impact on the observation mode of very long baseline interferometry, and can be compensated by the frequency transfer system in the FAST. In this manuscript, we propose a new phase drift compensation scheme, which is denoted as data-aided channel equalization scheme. The proposed scheme is based on a hypothesis of linear phase relationship between different wavelengths in the same optical fiber, and uses the channel response information of the data-aided channel to conduct signal recovery for the astronomical signal channel. Not only the phase drift, but also the frequency-dependent distortion of the broadband transmission link can be compensated. The proposed scheme has simple transmission structure, and the function part is well modularized, so that the Astronomer users can easily turn it on or off. In the proof-of-concept experiments, the estimation deviation can be significantly reduced by estimated channel responses averaging over training sequence repetitions, showing very high accuracy of the astronomical signal channel estimation.

14.
J Exp Bot ; 72(20): 6963-6976, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34283218

RESUMEN

Heterosis of grain yield is closely associated with heading date in crops. Gene combinations of the major heading date genes Ghd7, Ghd8, and Hd1 play important roles in enhancing grain yield and adaptation to ecological regions in rice. However, the predominant three-gene combinations for a specific ecological region remain unclear in both three-line and two-line hybrids. In this study, we sequenced these three genes of 50 cytoplasmic male sterile/maintainer lines, 31 photo-thermo-sensitive genic male sterile lines, and 109 restorer lines. Sequence analysis showed that hybrids carrying strong functional alleles of Ghd7 and Hd1 and non-functional Ghd8 are predominant in three-line hybrids and are recommended for rice production in the subtropics around 30°N/S. Hybrids carrying strong functional Ghd7 and Ghd8 and non-functional Hd1 are predominant in two-line hybrids and are recommended for low latitude areas around 23.5°N/S rich in photothermal resources. Hybrids carrying strong functional Ghd7 and Ghd8 and functional Hd1 were not identified in commercial hybrids in the middle and lower reaches of the Yangtze River, but they have high yield potential in tropical regions because they have the strongest photoperiod sensitivity. Based on these findings, two genic sterile lines, Xiangling 628S and C815S, whose hybrids often head very late, were diagnosed with these three genes, and Hd1 was targeted to be knocked out in Xiangling 628S and replaced with hd1 in C815S. The hybrids developed from both modified sterile lines in turn had appropriate heading dates and significantly improved grain yield. This study provides new insights for breeding design to develop hybrids for various regions.


Asunto(s)
Oryza , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Vigor Híbrido/genética , Oryza/genética , Oryza/metabolismo , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Mol Breed ; 41(11): 68, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37309362

RESUMEN

Chalkiness is one of the key determinants of rice quality and is a highly undesirable trait for breeding and marketing. In this study, qWCR7, a major quantitative trait locus (QTL) of white-core rate (WCR), was genetically validated using a BC3F2 segregation population and further fine mapped using a near isogenic line (NIL) population, of which both were derived from a cross between the donor parent DL208 and the recurrent parent ZS97. qWCR7 was finally narrowed to a genomic interval of ~ 68 kb, containing seven annotated genes. Among those, two genes displayed markedly different expression levels in endosperm of NILs. Transcriptome analysis showed that the synthesis and accumulation of metabolites played a key role in chalkiness formation. The contents of storage components and expression levels of related genes were detected, suggesting that starch and storage protein were closely related to white-core trait. Our findings have laid the foundation of map-based cloning of qWCR7, which may have potential value in quality improvement during rice breeding. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01260-x.

16.
Mol Breed ; 41(5): 36, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-37309330

RESUMEN

As a staple food for more than half of the world's population, the importance of rice is self-evident. Compared with ordinary rice, rice cultivars with superior eating quality and appearance quality are more popular with consumers due to their unique taste and ornamental value, even if their price is much higher. Appearance quality and CEQ (cooking and eating quality) are two very important aspects in the evaluation of rice quality. Here, we performed a genome-wide association study on floury endosperm in a diverse panel of 533 cultivated rice accessions. We identified a batch of potential floury genes and prioritize one (LOC_Os03g48060) for functional analyses. Two floury outer endosperm mutants (flo19-1 and flo19-2) were generated through editing LOC_Os03g48060 (named as FLO19 in this study), which encodes a class I glutamine amidotransferase. The different performances of the two mutants in various storage substances directly led to completely different changes in CEQ. The mutation of FLO19 gene caused the damage of carbon and nitrogen metabolism in rice, which affected the normal growth and development of rice, including decreased plant height and yield loss by decreased grain filling rate. Through haplotype analysis, we identified a haplotype of FLO19 that can improve both CEQ and appearance quality of rice, Hap2, which provides a selection target for rice quality improvement, especially for high-yield indica rice varieties. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01226-z.

17.
J Integr Plant Biol ; 63(5): 878-888, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32886450

RESUMEN

Appearance and taste are important factors in rice (Oryza sativa) grain quality. Here, we investigated the taste scores and related eating-quality traits of 533 diverse cultivars to assess the relationships between-and genetic basis of-rice taste and eating-quality. A genome-wide association study highlighted the Wx gene as the major factor underlying variation in taste and eating quality. Notably, a novel waxy (Wx) allele, Wxla , which combined two mutations from Wxb and Wxin , exhibited a unique phenotype. Reduced GBSSI activity conferred Wxla rice with both a transparent appearance and good eating quality. Haplotype analysis revealed that Wxla was derived from intragenic recombination. In fact, the recombination rate at the Wx locus was estimated to be 3.34 kb/cM, which was about 75-fold higher than the genome-wide mean, indicating that intragenic recombination is a major force driving diversity at the Wx locus. Based on our results, we propose a new network for Wx evolution, noting that new Wx alleles could easily be generated by crossing genotypes with different Wx alleles. This study thus provides insights into the evolution of the Wx locus and facilitates molecular breeding for quality in rice.


Asunto(s)
Oryza/genética , Proteínas de Plantas/metabolismo , Alelos , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Estudio de Asociación del Genoma Completo , Proteínas de Plantas/genética
18.
Nature ; 512(7515): 445-8, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25164755

RESUMEN

The transcriptome is the readout of the genome. Identifying common features in it across distant species can reveal fundamental principles. To this end, the ENCODE and modENCODE consortia have generated large amounts of matched RNA-sequencing data for human, worm and fly. Uniform processing and comprehensive annotation of these data allow comparison across metazoan phyla, extending beyond earlier within-phylum transcriptome comparisons and revealing ancient, conserved features. Specifically, we discover co-expression modules shared across animals, many of which are enriched in developmental genes. Moreover, we use expression patterns to align the stages in worm and fly development and find a novel pairing between worm embryo and fly pupae, in addition to the embryo-to-embryo and larvae-to-larvae pairings. Furthermore, we find that the extent of non-canonical, non-coding transcription is similar in each organism, per base pair. Finally, we find in all three organisms that the gene-expression levels, both coding and non-coding, can be quantitatively predicted from chromatin features at the promoter using a 'universal model' based on a single set of organism-independent parameters.


Asunto(s)
Caenorhabditis elegans/genética , Drosophila melanogaster/genética , Perfilación de la Expresión Génica , Transcriptoma/genética , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/crecimiento & desarrollo , Cromatina/genética , Análisis por Conglomerados , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/genética , Histonas/metabolismo , Humanos , Larva/genética , Larva/crecimiento & desarrollo , Modelos Genéticos , Anotación de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Pupa/genética , Pupa/crecimiento & desarrollo , ARN no Traducido/genética , Análisis de Secuencia de ARN
19.
Genome Res ; 26(9): 1233-44, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27516619

RESUMEN

Long noncoding RNAs (lncRNAs), a recently discovered class of cellular RNAs, play important roles in the regulation of many cellular developmental processes. Although lncRNAs have been systematically identified in various systems, most of them have not been functionally characterized in vivo in animal models. In this study, we identified 128 testis-specific Drosophila lncRNAs and knocked out 105 of them using an optimized three-component CRISPR/Cas9 system. Among the lncRNA knockouts, 33 (31%) exhibited a partial or complete loss of male fertility, accompanied by visual developmental defects in late spermatogenesis. In addition, six knockouts were fully or partially rescued by transgenes in a trans configuration, indicating that those lncRNAs primarily work in trans Furthermore, gene expression profiles for five lncRNA mutants revealed that testis-specific lncRNAs regulate global gene expression, orchestrating late male germ cell differentiation. Compared with coding genes, the testis-specific lncRNAs evolved much faster. Moreover, lncRNAs of greater functional importance exhibited higher sequence conservation, suggesting that they are under constant evolutionary selection. Collectively, our results reveal critical functions of rapidly evolving testis-specific lncRNAs in late Drosophila spermatogenesis.


Asunto(s)
Secuencia Conservada/genética , ARN Largo no Codificante/genética , Espermatogénesis/genética , Testículo/crecimiento & desarrollo , Animales , Sistemas CRISPR-Cas , Drosophila/genética , Drosophila/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/crecimiento & desarrollo , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Masculino
20.
Plant Biotechnol J ; 17(11): 2211-2222, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31004558

RESUMEN

Combining ability is a measure for selecting elite parents and predicting hybrid performance in plant breeding. However, the genetic basis of combining ability remains unclear and a global view of combining ability from diverse mating designs is lacking. We developed a North Carolina II (NCII) population of 96 Oryza sativa and four male sterile lines to identify parents of greatest value for hybrid rice production. Statistical analyses indicated that general combining ability (GCA) and specific combining ability (SCA) contributed variously to different agronomic traits. In a genome-wide association study (GWAS) of agronomic traits, GCA and SCA, we identified 34 significant associations (P < 2.39 × 10-7 ). The superior alleles of GCA loci (Ghd8, GS3 and qSSR4) accumulated in parental lines with high GCA and explained 30.03% of GCA variance in grain yield, indicating that molecular breeding of high GCA parental lines is feasible. The distinct distributions of these QTLs contributed to the differentiation of parental GCA in subpopulations. GWAS of SCA identified 12 more loci that showed dominance on corresponding agronomic traits. We conclude that the accumulation of superior GCA and SCA alleles is an important contributor to heterosis and QTLs that greatly contributed to combining ability in our study would accelerate the identification of elite inbred lines and breeding of super hybrids.


Asunto(s)
Vigor Híbrido , Oryza/genética , Fitomejoramiento , Sitios de Carácter Cuantitativo , Estudios de Asociación Genética , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA