Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Ann Hematol ; 102(10): 2707-2716, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37578540

RESUMEN

To explore the prevalence and severity of COVID-19 and the mental health during the Omicron pandemic in patients with chronic myeloid leukemia (CML), a cross-sectional survey from 2609 respondents with CML was performed. A total of 1725 (66%) reported that they had COVID-19 during this period. Among them, 1621 (94%) were mild; 97 (6%), moderate; 7 (0.4%), severe; and 0, critical or death. Four hundred three (15%), 199 (8%), and 532 (20%) had moderate to severe depression, anxiety, and distress, respectively. Eight hundred ninety (34%), 667 (26%), and 573 (22%), avoidance, intrusion, and hyper-arousal, respectively. In multivariate analyses, longer TKI-therapy duration was significantly associated with a lower prevalence of COVID-19 (odds ratio [OR] = 0.98; 95% confidence interval [CI], 0.95, 0.99; p = 0.043); however, living in urban areas (OR = 1.6 [1.3, 2.0]; p < 0.001) and having family members with COVID-19 (OR = 18.6 [15.1, 22.8]; p < 0.001), a higher prevalence of COVID-19. Increasing age (OR = 1.2 [1.1, 1.4]; p = 0.009), comorbidity(ies) (OR = 1.7 [1.1, 2.7]; p = 0.010), and multi-TKI-resistant patients receiving 3rd-generation TKIs or investigational agents (OR = 2.2 [1.2, 4.2]; p = 0.010) were significantly associated with moderate or severe COVID-19. Female, comorbidity(ies), unvaccinated, and moderate or severe COVID-19 were significantly associated with almost all adverse mental health consequences; increasing age or forced TKI dose reduction because of various restriction during the pandemic, moderate to severe distress, avoidance, or intrusion; however, mild COVID-19, none or mild anxiety, distress, avoidance, or intrusion. In conclusion, shorter TKI-therapy duration, increasing age, comorbidity(ies), or multi-TKI-resistant patients receiving 3rd-generation TKIs or investigational agents had a higher prevalence of COVID-19 or higher risk of moderate or severe disease in patients with CML; increasing age, female, comorbidity(ies), forced TKI dose reduction due to the pandemic, moderate or severe COVID-19, unvaccinated, a higher likelihood of worse mental health.


Asunto(s)
COVID-19 , Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Femenino , COVID-19/epidemiología , COVID-19/complicaciones , Estudios Transversales , Inhibidores de Proteínas Quinasas/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/epidemiología , Leucemia Mielógena Crónica BCR-ABL Positiva/complicaciones , Ansiedad/epidemiología
2.
Hum Genet ; 140(3): 477-492, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32915251

RESUMEN

Next-generation sequencing (NGS) is an incredibly useful tool for genetic disease diagnosis. However, the most commonly used bioinformatics methods for analyzing sequence reads insufficiently discriminate genomic regions with extensive sequence identity, such as gene families and pseudogenes, complicating diagnostics. This problem has been recognized for specific genes, including many involved in human disease, and diagnostic labs must perform additional costly steps to guarantee accurate diagnosis in these cases. Here we report a new data analysis method based on the comparison of read depth between highly homologous regions to identify misalignment. Analyzing six clinically important genes-CYP21A2, GBA, HBA1/2, PMS2, and SMN1-each exhibiting misalignment issues related to homology, we show that our technique can correctly identify potential misalignment events and be used to make appropriate calls. Combined with long-range PCR and/or MLPA orthogonal testing, our clinical laboratory can improve variant calling with minimal additional cost. We propose an accurate and cost-efficient NGS testing procedure that will benefit disease diagnostics, carrier screening, and research-based population studies.


Asunto(s)
Enfermedades Genéticas Congénitas/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Algoritmos , Humanos , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple , Seudogenes
3.
J Inherit Metab Dis ; 42(2): 353-361, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30043187

RESUMEN

Pyridoxine dependent epilepsy (PDE) is a treatable epileptic encephalopathy characterized by a positive response to pharmacologic doses of pyridoxine. Despite seizure control, at least 75% of individuals have intellectual disability and developmental delay. Current treatment paradigms have resulted in improved cognitive outcomes emphasizing the importance of an early diagnosis. As genetic testing is increasingly accepted as first tier testing for epileptic encephalopathies, we aimed to provide a comprehensive overview of ALDH7A1 mutations that cause PDE. The genotypes, ethnic origin and reported gender was collected from 185 subjects with a diagnosis of PDE. The population frequency for the variants in this report and the existing literature were reviewed in the Genome Aggregation Database (gnomAD). Novel variants identified in population databases were also evaluated through in silico prediction software and select variants were over-expressed in an E.coli-based expression system to measure α-aminoadipic semialdehyde dehydrogenase activity and production of α-aminoadipic acid. This study adds 47 novel variants to the literature resulting in a total of 165 reported pathogenic variants. Based on this report, in silico predictions, and general population data, we estimate an incidence of approximately 1:64,352 live births. This report provides a comprehensive overview of known ALDH7A1 mutations that cause PDE, and suggests that PDE may be more common than initially estimated. Due to the relative high frequency of the disease, the likelihood of under-diagnosis given the wide clinical spectrum and limited awareness among clinicians as well as the cognitive improvement noted with early treatment, newborn screening for PDE may be warranted.


Asunto(s)
Aldehído Deshidrogenasa/genética , Epilepsia/genética , Ácido 2-Aminoadípico/metabolismo , Genotipo , Humanos , Mutación
4.
Mol Med ; 21: 381-8, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25998508

RESUMEN

Piwi-interacting RNAs (piRNAs) are a distinct group of small noncoding RNAs (sncRNAs) that silence transposable genetic elements to protect genome integrity. Because of their limited expression in gonads and sequence diversity, piRNAs remain the most mysterious class of small RNAs. Studies have shown piRNAs are present in somatic cells and dysregulated in gastric, breast and liver cancers. By deep sequencing 24 frozen benign kidney and clear cell renal cell carcinoma (ccRCC) specimens and using the publically available piRNA database, we found 26,991 piRNAs present in human kidney tissue. Among 920 piRNAs that had at least two copies in one specimen, 19 were differentially expressed in benign kidney and ccRCC tissues, and 46 were associated with metastasis. Among the metastasis-related piRNAs, we found three piRNAs (piR-32051, piR-39894 and piR-43607) to be derived from the same piRNA cluster at chromosome 17. We confirmed the three selected piRNAs not to be miRNAs or miRNA-like sncRNAs. We further validated the aberrant expression of the three piRNAs in a 68-case formalin-fixed and paraffin-embedded (FFPE) ccRCC tissue cohort and showed the up-regulation of the three piRNAs to be highly associated with ccRCC metastasis, late clinical stage and poor cancer-specific survival.


Asunto(s)
Carcinoma de Células Renales/genética , Carcinoma de Células Renales/mortalidad , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales/genética , Neoplasias Renales/mortalidad , ARN Interferente Pequeño/genética , Anciano , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Estudios de Cohortes , Femenino , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genómica , Humanos , Neoplasias Renales/patología , Masculino , Persona de Mediana Edad , Familia de Multigenes , Clasificación del Tumor , Metástasis de la Neoplasia , Estadificación de Neoplasias , Pronóstico , Reproducibilidad de los Resultados
5.
Genet Med ; 16(10): 787-92, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24763291

RESUMEN

PURPOSE: Schwannomatosis, a subtype of neurofibromatosis, is characterized by multiple benign, nonvestibular, nonintradermal schwannomas. Although the tumor suppressor SMARCB1 gene has been frequently identified as the underlying genetic cause of half of familial and ~10% of sporadic schwannomatosis, for most other cases, further causative genes remain to be discovered. Herein, we characterize the genome of a schwannomatosis family without constitutional inactivation of the SMARCB1 gene to explore novel genomic alterations predisposing individuals to the familial disease. METHODS: We performed whole-genome/exome sequencing on genomic DNA of both schwannomatosis-affected and normal members of the family. RESULTS: We identified a novel missense mutation (p.Asp208His; c.622G>C) in the coenzyme Q10 (CoQ10) biosynthesis monooxygenase 6 gene (COQ6) in schwannomatosis-affected members. The deleterious effects of the COQ6 mutations were validated by their lack of complementation in a coq6-deficient yeast mutant. Our study further indicated that the resultant haploinsufficiency of COQ6 might lead to CoQ10 deficiency and chronic overproduction of reactive oxygen species in Schwann cells. CONCLUSION: Although the exact oncogenetic mechanisms in this schwannomatosis family remain to be elucidated, our data strongly indicate a probable role of COQ6 mutation and CoQ10 deficiency in the development of familial schwannomatosis.Genet Med 16 10, 787-792.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Mutación de Línea Germinal , Mutación Missense , Neurilemoma/genética , Neurofibromatosis/genética , Neoplasias Cutáneas/genética , Ubiquinona/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Western Blotting , Línea Celular , Células Cultivadas , Proteínas Cromosómicas no Histona/genética , Análisis Mutacional de ADN/métodos , Proteínas de Unión al ADN/genética , Salud de la Familia , Técnicas de Silenciamiento del Gen , Prueba de Complementación Genética , Humanos , Hibridación Fluorescente in Situ , Datos de Secuencia Molecular , Linaje , Ratas , Especies Reactivas de Oxígeno/metabolismo , Proteína SMARCB1 , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Homología de Secuencia de Aminoácido , Factores de Transcripción/genética , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
6.
Nucleic Acids Res ; 40(15): e116, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22735701

RESUMEN

Many carcinogens leave a unique mutational fingerprint in the human genome. These mutational fingerprints manifest as specific types of mutations often clustering at certain genomic loci in tumor genomes from carcinogen-exposed individuals. To develop a high-throughput method for detecting the mutational fingerprint of carcinogens, we have devised a cost-, time- and labor-effective strategy, in which the widely used transgenic Big Blue mouse mutation detection assay is made compatible with the Roche/454 Genome Sequencer FLX Titanium next-generation sequencing technology. As proof of principle, we have used this novel method to establish the mutational fingerprints of three prominent carcinogens with varying mutagenic potencies, including sunlight ultraviolet radiation, 4-aminobiphenyl and secondhand smoke that are known to be strong, moderate and weak mutagens, respectively. For verification purposes, we have compared the mutational fingerprints of these carcinogens obtained by our newly developed method with those obtained by parallel analyses using the conventional low-throughput approach, that is, standard mutation detection assay followed by direct DNA sequencing using a capillary DNA sequencer. We demonstrate that this high-throughput next-generation sequencing-based method is highly specific and sensitive to detect the mutational fingerprints of the tested carcinogens. The method is reproducible, and its accuracy is comparable with that of the currently available low-throughput method. In conclusion, this novel method has the potential to move the field of carcinogenesis forward by allowing high-throughput analysis of mutations induced by endogenous and/or exogenous genotoxic agents.


Asunto(s)
Carcinógenos/toxicidad , Análisis Mutacional de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutágenos/toxicidad , Animales , Análisis por Conglomerados , Ratones , Ratones Transgénicos , Mutación , Tasa de Mutación , Análisis de Componente Principal , Rayos Ultravioleta
7.
RNA ; 17(12): 2256-62, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22016383

RESUMEN

Small RNAs (smRNAs) encompass several different classes of short noncoding RNAs. Progress in smRNA research and applications has coincided with the advance of techniques to detect them. Next-generation sequencing technologies are becoming the preferred smRNA profiling method because of their high-throughput capacity and digitized results. In our small RNA profiling study using Solexa, we observed serious biases introduced by the 5' adaptors in small RNA species coverage and abundance; therefore, the results cannot reveal the accurate composition of the small RNAome. We found that the profiling results can be significantly optimized by using an index pool of 64 customized 5' adaptors. This pool of 64 adaptors can be further reduced to four smaller index pools, each containing 16 adaptors, to minimize profiling bias and facilitate multiplexing. It is plausible that this type of bias exists in other deep-sequencing technologies, and adaptor pooling could be an easy work-around solution to reveal the "true" small RNAome.


Asunto(s)
Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , MicroARNs/metabolismo , Análisis de Secuencia de ARN , Análisis por Conglomerados , Humanos , MicroARNs/química , Anotación de Secuencia Molecular , Reproducibilidad de los Resultados
8.
J Natl Compr Canc Netw ; 11 Suppl 4: S9-17, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24158971

RESUMEN

Specific genomic colorectal cancer alterations are increasingly linked to prognosis and/or response to specific anticancer agents. The identification of KRAS mutations as markers of resistance to epidermal growth factor receptor (EGFR) inhibitors has paved the way to the interrogation of numerous other markers of resistance to anti-EGFR therapy, such as NRAS, BRAF, and PI3KCA mutations. Other genomic and protein expression alterations have recently been identified as potential targets of treatment or as markers of chemotherapy or targeted-therapy resistance, including ERCC1 expression, c-Met expression, PTEN expression, HER2 amplification, HER3 expression, and rare KRAS mutations. As the number of distinct validated intratumor genomic assays increases, numerous molecular assays will need to be compiled into one multigene panel assay. Several companies and academic centers are now offering multigene assays to patients with metastatic colorectal cancer and other solid tumors. This article discusses the technology behind multigene assays, its limitations, its current advantages, and its potential in the clinical care of metastatic colorectal cancer.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Neoplasias Colorrectales/patología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Metástasis de la Neoplasia
9.
Biomater Sci ; 11(10): 3603-3615, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37009640

RESUMEN

Ionic conductive hydrogels are promising candidates for fabricating wearable sensors for human motion detection and disease diagnosis, and electronic skin. However, most of the existing ionic conductive hydrogel-based sensors primarily respond to a single-strain stimulus. Only a few ionic conductive hydrogels can respond to multiple physiological signals. Although some studies have explored multi-stimulus sensors, such as those detecting strain and temperature, the ability to identify the type of stimulus remains a challenge, which limits their applications. Herein, a multi-responsive nanostructured ionic conductive hydrogel was successfully developed by crosslinking the thermally sensitive poly(N-isopropylacrylamide-co-ionic liquid) conductive nanogel (PNI NG) with a poly(sulfobetaine methacrylate-co-ionic liquid) (PSI) network. The resultant hydrogel (PNI NG@PSI) was endowed with good mechanical stretchability (300%), resilience and fatigue resistance, and excellent conductivity (2.4 S m-1). Furthermore, the hydrogel exhibited a sensitive and stable electrical signal response and has a potential application in human motion detection. Moreover, the introduction of a nanostructured thermally responsive PNIPAAm network also endowed it with a sensitive and unique thermal-sensing ability to timely and accurately record temperature changes in the range of 30-45 °C, holding promise for application as a wearable temperature sensor to detect fever or inflammation in the human body. In particular, as a dual strain-temperature sensor, the hydrogel demonstrated an excellent capability of distinguishing the type of stimulus from superposed strain-temperature stimuli via electrical signals. Therefore, the implementation of the proposed hydrogel in wearable multi-signal sensors provides a new strategy for different applications, such as health monitoring and human-machine interactions.


Asunto(s)
Hidrogeles , Líquidos Iónicos , Humanos , Temperatura , Conductividad Eléctrica , Electricidad , Iones
10.
J Biol Chem ; 286(16): 14681-90, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21388966

RESUMEN

FoxO transcription factors have been implicated in lipid metabolism; however, the underlying mechanisms are not well understood. Here, in an effort to elucidate such mechanisms, we examined the phenotypic consequences of liver-specific deletion of three members of the FoxO family: FoxO1, FoxO3, and FoxO4. These liver-specific triply null mice, designated LTKO, exhibited elevated triglycerides in the liver on regular chow diet. More remarkably, LTKO mice developed severe hepatic steatosis following placement on a high fat diet. Further analyses revealed that hepatic NAD(+) levels and Sirt1 activity were decreased in the liver of the LTKO mice relative to controls. At the mechanistic level, expression profile analyses showed that LTKO livers had significantly down-regulated expression of the nicotinamide phosphoribosyltransferase (Nampt) gene encoding the rate-limiting enzyme in the salvage pathway of NAD(+) biosynthesis. Luciferase reporter assays and chromatin immunoprecipitation analyses demonstrated that Nampt is a transcriptional target gene of FoxOs. Significantly, overexpression of Nampt gene reduced, whereas knockdown increased, hepatic triglyceride levels in vitro and in vivo. Thus, FoxOs control the Nampt gene expression and the NAD(+) signaling in the regulation of hepatic triglyceride homeostasis.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Regulación Enzimológica de la Expresión Génica , Hígado/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Animales , Ácidos Grasos/química , Proteína Forkhead Box O1 , Regulación de la Expresión Génica , Humanos , Insulina/metabolismo , Metabolismo de los Lípidos , Lípidos/química , Ratones , Ratones Transgénicos , NAD/química , Triglicéridos/metabolismo
11.
J Mol Med (Berl) ; 100(2): 269-284, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34714369

RESUMEN

Atypical hemolytic uremic syndrome (aHUS) and C3 glomerulopathy (C3G) have been linked to mutations in many of the proteins that are involved in alternative complement pathway activation. Age and etiology confounded, the prevalence of such mutations has been reported to be over 30 to 50% in these diseases. However, the cohorts studied included many children or individuals with a familial history of complement-related disorders and genetic tests were usually limited to exome sequencing of known causative or risk-associated genes. In this study, a retrospective adult cohort of 35 patients with biopsy-proven thrombotic microangiopathy (the largest in Canada) and 10 patients with C3 glomerulopathy was tested through an extended exome panel to identify causative defects in associated or candidate genes including those of the alternative and terminal complement pathways. A variant of unknown significance was also analyzed for pathogenicity through in vitro studies. To our surprise, the prevalence of known causative or risk-associated variants in either of these cohorts was found to be less than ~ 15% overall. However, the panel used and analyses carried out allowed to identify novel variants of potential clinical significance and a number of candidate genes. The prevalence of known genetic defects in adult-onset aHUS and C3G is thus probably much lower than 30 to 50%. Our results also point towards the importance of investigating diseases of the alternative complement pathway through extended exome panels and in vitro analyses. KEY MESSAGES: The alternative complement pathway plays a major role in the pathogenesis of hemolytic uremic syndrome and C3 glomerulopathy. Based on previous studies, both disorders have been commonly linked to variants in the various intermediates that sustain or regulate this pathway. The prevalence of such mutations in the adult-onset and sporadic forms of these diseases is probably much lower than expected based on larger series. The sporadic forms of complementopathies are likely to involve additional genes that are yet to be uncovered.


Asunto(s)
Síndrome Hemolítico Urémico Atípico/genética , Glomerulonefritis/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Síndrome Hemolítico Urémico Atípico/diagnóstico , Biopsia , Complemento C3 , Femenino , Glomerulonefritis/diagnóstico , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Adulto Joven
13.
J Pathol ; 222(1): 41-51, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20593407

RESUMEN

Renal cell carcinoma (RCC) is one of the leading causes of cancer mortality. Characterization of microRNA (miRNA) expression of RCC will help disclose new pathogenic pathways in tumourigenesis and progression and may lead to the development of molecular biomarkers and target-specific therapies for diagnosis, prognostication and treatment. With limitations in test specificity and the ability to detect novel miRNA and other small non-coding RNAs (smRNAs), microarray and RT-PCR techniques are being replaced by the evolving deep-sequencing technologies, at least in the discovery phase. Until now, cancer miRNA profiling of human benign and tumour specimen sets, using smRNA deep-sequencing (smRNA-seq), has not been reported. Specifically, due to concern over possible poor RNA quality/integrity, formalin-fixed paraffin-embedded (FFPE) samples have not been used for such studies. Here, we performed whole-genome smRNA-seq analysis using a benign and RCC specimen set and have successfully profiled the miRNA expression. Studies performed on paired frozen and FFPE specimens showed very similar results. Moreover, a comparison study of microarray, deep-sequencing and RT-PCR methodologies also showed a high correlation among the three technologies. To our knowledge, this is the first study to demonstrate that FFPE specimens can be used reliably for miRNA deep-sequencing analysis, making future large-scale clinical cohort/trial-based studies possible.


Asunto(s)
Carcinoma de Células Renales/genética , Neoplasias Renales/genética , Análisis por Conglomerados , Criopreservación , Formaldehído , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Adhesión en Parafina , ARN Neoplásico/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Fijación del Tejido/métodos
14.
Genes (Basel) ; 11(8)2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32784565

RESUMEN

Missense, nonsense, splice site and regulatory region variants in interferon regulatory factor 6 (IRF6) have been shown to contribute to both syndromic and non-syndromic forms of cleft lip and/or palate (CL/P). We report the diagnostic evaluation of a complex multigeneration family of Honduran ancestry with a pedigree structure consistent with autosomal-dominant inheritance with both incomplete penetrance and variable expressivity. The proband's grandmother bore children with two partners and CL/P segregates on both sides of each lineage. Through whole-exome sequencing of five members of the family, we identified a single shared synonymous variant, located in the middle of exon 7 of IRF6 (p.Ser307Ser; g.209963979 G>A; c.921C>T). The variant was shown to segregate in the seven affected individuals and through three unaffected obligate carriers, spanning both sides of this pedigree. This variant is very rare, only being found in three (all of Latino ancestry) of 251,352 alleles in the gnomAD database. While the variant did not create a splice acceptor/donor site, in silico analysis predicted it to impact an exonic splice silencer element and the binding of major splice regulatory factors. In vitro splice assays supported this by revealing multiple abnormal splicing events, estimated to impact >60% of allelic transcripts. Sequencing of the alternate splice products demonstrated the unmasking of a cryptic splice site six nucleotides 5' of the variant, as well as variable utilization of cryptic splice sites in intron 6. The ectopic expression of different splice regulatory proteins altered the proportion of abnormal splicing events seen in the splice assay, although the alteration was dependent on the splice factor. Importantly, each alternatively spliced mRNA is predicted to result in a frame shift and prematurely truncated IRF6 protein. This is the first study to identify a synonymous variant as a likely cause of NS-CL/P and highlights the care that should be taken by laboratories when considering and interpreting variants.


Asunto(s)
Labio Leporino/genética , Fisura del Paladar/genética , Factores Reguladores del Interferón/genética , Mutación , Empalme Alternativo , Animales , Células COS , Chlorocebus aethiops , Fisura del Paladar/patología , Femenino , Factores Reguladores del Interferón/metabolismo , Masculino , Linaje , Sitios de Empalme de ARN/genética
15.
J Mol Diagn ; 22(5): 670-678, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32092540

RESUMEN

When a potential disease-causing variant is detected in a proband, parental testing is used to determine the mode of inheritance. This study demonstrates that next-generation sequencing (NGS) is uniquely well suited for parental testing, in particular because of its ability to detect clinically relevant germline mosaicism. Parental variant testing by NGS was performed in a clinical laboratory for 1 year. The detection of mosaicism by NGS was compared with its detection by Sanger sequencing. Eight cases of previously unrevealed mosaicism were detected by NGS across eight different genes. Mosaic variants were differentiated from sequencing noise using custom bioinformatics analyses in combination with familial inheritance data and complementary Sanger sequencing. Sanger sequencing detected mosaic variants with allele fractions ≥8% by NGS, but could not detect mosaic variants below that level. Detection of germline mosaicism by NGS is invaluable to parents, providing a more accurate recurrence risk that can alter decisions on family planning and pregnancy management. Because NGS can also confirm parentage and increase scalability, it simultaneously streamlines and strengthens the variant curation process. These features make NGS the ideal method for parental testing, superior even to Sanger sequencing for most genomic loci.


Asunto(s)
Células Germinativas , Secuenciación de Nucleótidos de Alto Rendimiento , Mosaicismo , Alelos , Biología Computacional/métodos , Femenino , Variación Genética , Genotipo , Heterocigoto , Humanos , Patrón de Herencia , Masculino , Mutación , Linaje , Análisis de Secuencia de ADN
16.
J Clin Med ; 8(10)2019 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-31635338

RESUMEN

Oncogenic (mutant) Ras protein Kirsten rat sarcoma viral oncogene homolog (KRAS) promotes uncontrolled proliferation, altered metabolism, and loss of genome integrity in a cell-intrinsic manner. Here, we demonstrate that CD4+ T cells when incubated with tumor-derived exosomes from mutant (MT) KRAS non-small-cell lung cancer (NSCLC) cells, patient sera, or a mouse xenograft model, induce phenotypic conversion to FOXP3+ Treg-like cells that are immune-suppressive. Furthermore, transfecting T cells with MT KRAS cDNA alone induced phenotypic switching and mathematical modeling supported this conclusion. Single-cell sequencing identified the interferon pathway as the mechanism underlying the phenotypic switch. These observations highlight a novel cytokine-independent, cell-extrinsic role for KRAS in T cell phenotypic switching. Thus, targeting this new class of Tregs represents a unique therapeutic approach for NSCLC. Since KRAS is the most frequently mutated oncogene in a wide variety of cancers, the findings of this investigation are likely to be of broad interest and have a large scientific impact.

17.
Heart Rhythm ; 16(1): 98-105, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30010057

RESUMEN

BACKGROUND: Rare genetic variants in TNNI3K encoding troponin-I interacting kinase have been linked to a distinct syndrome consisting primarily of supraventricular tachycardias and variably expressed conduction disturbance and dilated cardiomyopathy in 2 families. OBJECTIVE: The purpose of this study was to identify new genetic variants associated with inherited supraventricular tachycardias, cardiac conduction disease, and cardiomyopathy. METHODS: We conducted next generation sequencing in 3 independent multigenerational families with atrial/junctional tachycardia with or without conduction disturbance, dilated cardiomyopathy, and sudden death. We also assessed the effect of identified variant on protein autophosphorylation. RESULTS: In this study, we uncovered the same ultra-rare genetic variant in TNNI3K (c.2302G>A, p.Glu768Lys), which co-segregated with disease features in all affected individuals (n = 23) from all 3 families. TNNI3K harboring the TNNI3K-p.Glu768Lys variant displayed enhanced kinase activity, in line with expectations from previous mouse studies that demonstrated increased conduction indices and procardiomyopathic effects with increased levels of Tnni3k. CONCLUSION: This study corroborates further the causal link between rare genetic variation in TNNI3K and this distinct complex phenotype, and points to enhanced kinase activity of TNNI3K as the underlying pathobiological mechanism.


Asunto(s)
Cardiomiopatía Dilatada/genética , ADN/genética , Sistema de Conducción Cardíaco/fisiopatología , Mutación , Proteínas Serina-Treonina Quinasas/genética , Taquicardia Supraventricular/genética , Adolescente , Western Blotting , Cardiomiopatía Dilatada/diagnóstico , Cardiomiopatía Dilatada/fisiopatología , Células Cultivadas , Análisis Mutacional de ADN , Femenino , Pruebas Genéticas , Humanos , Imagen por Resonancia Cinemagnética/métodos , Masculino , Linaje , Proteínas Serina-Treonina Quinasas/metabolismo , Taquicardia Supraventricular/diagnóstico , Taquicardia Supraventricular/fisiopatología , Adulto Joven
18.
J Mol Diagn ; 10(5): 469-74, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18687789

RESUMEN

Diagnostic testing for the fragile X syndrome is designed to detect the most common mutation, a CGG expansion in the 5'-untranslated region of the fragile X mental retardation (FMRI) gene. PCR can determine the number of CGG repeats less than 100, whereas Southern analysis can detect large premutations, full mutations, and their methylation status. Bands larger than 5.8 kb observed via Southern analysis are usually considered a methylated full mutation, causing fragile X syndrome in males and varied clinical presentations in females. We observed a 10.9-kb band on a Southern blot assay from an autistic girl with language delay. Further investigation identified a novel G-to-A transition at an EcoRI cleavage site, upstream of the CGG repeat region of the FMRI gene. This base change abolished the EcoRI restriction site, resulting in a 10.9-kb pseudo-full mutation. This G-to-A base change has not been previously reported and was not identified in a subsequent analysis of 105 male and 30 female patient samples. The clear 10.9-kb band detected on a Southern blot assay for fragile X syndrome mimics a large, methylated full mutation, which could result in a misdiagnosis without the benefit of family studies and further testing.


Asunto(s)
Adenosina/genética , Enzimas de Restricción-Modificación del ADN/genética , Síndrome del Cromosoma X Frágil/diagnóstico , Síndrome del Cromosoma X Frágil/genética , Mutación , Secuencia de Bases , Southern Blotting , Preescolar , Análisis Mutacional de ADN , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Humanos , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Homología de Secuencia de Ácido Nucleico , Expansión de Repetición de Trinucleótido/genética
19.
Am J Med Genet A ; 146A(4): 505-11, 2008 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-18203167

RESUMEN

We describe a nondysmorphic patient with developmental delay and autism spectrum disorder who has a missense mutation in the Jumonji AT-rich interactive domain 1C (JARID1C) gene. This child first presented at 30 months of age with stereotyped and repetitive behaviors, impairment in social reciprocity and in the use of multiple nonverbal behaviors, and developmental delay primarily in the language domain. A diagnosis of autism was made and subsequently confirmed at the current age of 47 months. Cytogenetic and fragile X studies were normal. Mutational analysis revealed a novel missense mutation in exon 16 of the JARID1C gene that results in an arginine to tryptophan substitution at amino acid 766 (R766W). Sequence alignment analysis with multiple available eukaryotic sequences including the homologous proteins of mouse and zebrafish demonstrated that the affected amino acid is conserved. JARID1C has not previously been implicated in autism susceptibility. Recent novel molecular evidence suggests that it is a histone demethylase specific for di- and trimethylated histone 3 lysine 4 (H3K4) and functions as a transcriptional repressor by fostering REST-mediated neuronal gene regulation. The JARID1C-regulated genes SCN2A, CACNA1H, BDNF, and SLC18A1 have previously been associated with autism and cognitive dysfunction. This patient brings the total number of reported JARID1C mutations to 14. This presentation both extends the range of neurocognitive phenotypes attributable to mutations in this gene and illustrates the importance of molecular studies and DNA sequence analysis for accurate diagnosis of monogenic causes of autism.


Asunto(s)
Trastorno Autístico/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Mutación Puntual , Proteínas Supresoras de Tumor/genética , Secuencia de Bases , Preescolar , Análisis Mutacional de ADN , Femenino , Humanos , Linaje , Proteína 2 de Unión a Retinoblastoma
20.
J Bone Miner Res ; 31(10): 1841-1844, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27105398

RESUMEN

The CYP24A1 gene encodes a mitochondrial 24-hydroxylase that inactivates 1,25(OH)2 D. Loss-of-function mutations in CYP24A1 cause hypercalcemia, nephrolithiasis and nephrocalcinosis. We describe a woman with CYP24A1 deficiency and recurrent gestational hypercalcemia. Her first pregnancy, at age 20, resulted with the intrauterine demise of twin fetuses. Postpartum, she developed severe hypercalcemia (14 mg/dL), altered mental status, and acute pancreatitis. Her PTH was suppressed (6 pg/mL) and her 1,25(OH)2 D was elevated (165 and 195 pg/mL on postpartum day 1 and 5, respectively). Between one and three months postpartum, her serum calcium decreased from 11.4 to 10.2 mg/dL while her 1,25(OH)2 D level decreased from 83 to 24 pg/mL. Her 24-hour urine calcium was 277 mg. Six months postpartum, she became pregnant again. At 14 weeks, her albumin-corrected calcium level was 10.4 mg/dL and her 1,25(OH)2 D level exceeded 200 pg/mL. To establish the diagnosis of CYP24A1 deficiency, we showed her 24,25(OH)2 D level to be undetectable (<2 ng/mL). Exon sequencing of the CYP24A1 gene revealed a homozygous, 8-nucleotide deletion in exon 8, causing an S334V substitution and premature termination due to a frame shift (c.999_1006del, p.Ser334Valfs*9). To prevent hypercalcemia, she was advised to discontinue prenatal vitamins, avoid sun exposure and calcium-rich foods, and start omeprazole and a calcium binder (250 mg K-Phos-neutral with meals). Despite these measures, both hypercalcemia (11.5 mg/dL) and acute pancreatitis recurred. Labor was induced and a healthy, normocalcemic boy was delivered. In the absence of lactation, maternal hypercalcemia resolved within 2 months. This report shows that CYP24A1-deficient subjects may be normocalcemic at baseline. Hypercalcemia may be unmasked by pregnancy through the routine use of calciferol-containing prenatal vitamins, increased 1-alpha hydroxylation of VitD by the placenta and maternal kidney, and production of PTHrP by the uteroplacental unit. CYP24A1 deficiency should be considered in patients with unexplained vitamin D-mediated hypercalcemia. © 2016 American Society for Bone and Mineral Research.


Asunto(s)
Secuencia de Bases , Hipercalcemia , Pancreatitis , Trastornos Puerperales , Eliminación de Secuencia , Vitamina D3 24-Hidroxilasa/deficiencia , Enfermedad Aguda , Adulto , Femenino , Humanos , Hipercalcemia/sangre , Hipercalcemia/tratamiento farmacológico , Hipercalcemia/genética , Pancreatitis/sangre , Pancreatitis/tratamiento farmacológico , Pancreatitis/genética , Embarazo , Trastornos Puerperales/sangre , Trastornos Puerperales/tratamiento farmacológico , Trastornos Puerperales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA