Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Chem Soc Rev ; 53(9): 4648-4673, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38525837

RESUMEN

Given the critical importance of novel ligand development for transition-metal (TM) catalysis, as well as the resurgence of the field of organosilicon chemistry and silyl ligands, to summarize the topic of X-type silyl ligands for TM catalysis is highly attractive and timely. This review particularly emphasizes the unique σ-donating characteristics and trans-effects of silyl ligands, highlighting their crucial roles in enhancing the reactivity and selectivity of various catalytic reactions, including small molecule activation, Kumada cross-coupling, hydrofunctionalization, C-H functionalization, and dehydrogenative Si-O coupling reactions. Additionally, future developments in this field are also provided, which would inspire new insights and applications in catalytic synthetic chemistry.

2.
Environ Res ; 251(Pt 2): 118671, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38479719

RESUMEN

The low cost and high efficiency of microwave-assisted regeneration render it a viable alternative to conventional regeneration methods. To enhance the regeneration performance, we developed a coupled electromagnetic, heat, and mass transfer model to investigate the heat and mass transfer mechanisms of activated carbon during microwave-assisted regeneration. Simulation results demonstrated that the toluene desorption process is governed by temperature distribution. Changing the input power and flow rate can promote the intensity of hot spots and adjust their distribution, respectively, thereby accelerating toluene desorption, inhibiting readsorption, and promoting regeneration efficiency. Ultimately, controlling the input power and flow rate can flexibly adjust toluene emissions to satisfy the processing demands of desorbed toluene. Taken together, this study provides a comprehensive understanding of the heat and mass transfer mechanisms of microwave-assisted regeneration and insights into adsorbent regeneration.


Asunto(s)
Carbón Orgánico , Calor , Microondas , Tolueno , Tolueno/química , Adsorción , Carbón Orgánico/química , Modelos Químicos
3.
Chemistry ; 29(19): e202203475, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36617499

RESUMEN

Silanols are valuable and important compounds, which have found widespread applications in the field of materials science, synthetic chemistry, and medicinal chemistry. Although a handful of approaches have been developed for the synthesis of various silanols, access to enantioenriched silicon-stereogenic silanols remains underdeveloped. This Concept article intends to summarize and highlight recent advances in the construction of silicon-stereogenic silanols and endeavors to encourage further research in this area.

4.
Crit Rev Food Sci Nutr ; 63(7): 947-963, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34309422

RESUMEN

Dough rheology improvers, which often are oxidative reagents in nature, have long been used in bread-making industry to enhance protein crosslinking and subsequently improve the dough rheological properties and bread qualities. Numerous studies were conducted to explore the effects of these oxidative agents on dough quality improving, however, the underlying mechanism of their action during dough development has not been fully understood. Due to the public health concerns, multiple oxidative reagents were banned in some countries across the world, while others are still permitted in accordance with regulations. Therefore, a comprehensive understanding of their application, significance, and safety in bread manufacturing is necessary. This review aims to provide a detailed information about the evolutionary history of several commonly used oxidants acting as dough rheology improvers, their mechanisms of action, as well as their potential toxicity.


Asunto(s)
Pan , Glútenes , Reología , Salud Pública , Harina
5.
Angew Chem Int Ed Engl ; 62(36): e202307812, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37462125

RESUMEN

Catalytic enantioselective intermolecular C-H silylation offers an efficient approach for the rapid construction of chiral organosilicon compounds, but remains a significant challenge. Herein, a new type of chiral silyl ligand is developed, which enables the first iridium-catalyzed atroposelective intermolecular C-H silylation reaction of 2-arylisoquinolines. This protocol features mild reaction conditions, high atom economy, and remarkable yield with excellent stereoselectivity (up to 99 % yield, 99 % ee), delivering enantioenriched axially chiral silane platform molecules with facile convertibility. Key to the success of this unprecedented transformation relies on a novel chiral PSiSi-ligand, which facilitates the intermolecular C-H silylation process with perfect chem-, regio- and stereo-control via a multi-coordinated silyl iridium complex.

6.
Molecules ; 27(12)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35744870

RESUMEN

Satsuma mandarin peel pectin was extracted by high hydrostatic pressure-assisted citric acid (HHPCP) or hydrochloric acid (HHPHP), and the physiochemical, structural, rheological and emulsifying characteristics were compared to those from conventional citric acid (CCP) and hydrochloric acid (CHP). Results showed that HHP and citric acid could both increase the pectin yield, and HHPCP had the highest yield (18.99%). Structural characterization, including NMR and FTIR, demonstrated that HHPHP showed higher Mw than the other pectins. The viscosity of the pectin treated with HHP was higher than that obtained with the conventional method, with HHPHP exhibiting significantly higher viscosity. Interestingly, all the pectin emulsions showed small particle mean diameters (D4,3 being 0.2-1.3 µm) and extremely good emulsifying stability with centrifugation and 30-day storage assays, all being 100%. Satsuma mandarin peel could become a highly promising pectin source with good emulsifying properties, and HHP-assisted acid could be a more efficient method for pectin extraction.


Asunto(s)
Citrus , Pectinas , Ácido Cítrico/química , Citrus/química , Ácido Clorhídrico , Presión Hidrostática , Pectinas/química
7.
Sep Purif Technol ; 2622021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34366698

RESUMEN

H2O2 generation by 2-electron oxygen electroreduction reaction (2eORR) has attracted great attention as an alternative to the industry-dominant anthraquinone process. Electro-Fenton (EF) process, which relies on the H2O2 electrogeneration, is regarded as an important environmental application of H2O2 generation by 2eORR. However, its application is hindered by the relatively expensive electrode materials. Proposing cathode materials with low cost and facile synthetic procedures are the priority to advance the EF process. In this work, a composite cathode structure that uses graphitic granular bamboo-based biochar (GB) and stainless steel (SS) mesh (GBSS) is proposed, where SS mesh functions as current distributor and GB supports synergistic H2O2 electrogeneration and activation. The graphitic carbon makes GB conductive and the oxygen-containing groups serve as active sites for H2O2 production. 11.3 mg/L H2O2 was produced from 2.0 g GB at 50 mA after 50 min under neutral pH without external O2/air supply. The O-doped biochar further increased the H2O2 yield to 18.3 mg/L under same conditions. The GBSS electrode is also effective for H2O2 activation to generate ·OH, especially under neutral pH. Ultimately, a neutral Fe-free EF process enabled by GBSS cathode is effective for removal of various model organic pollutants (reactive blue 19, orange II, 4-nitrophenol) within 120 min, and for their partial mineralization (48.4% to 63.5%). Long-term stability of the GBSS electrode for H2O2 electrogeneration, H2O2 activation, and pollutants degradation were also examined and analyzed. This work offers a promising application for biomass waste for removals of organic pollutants in neutral Fe-free EF process.

8.
Angew Chem Int Ed Engl ; 60(4): 1883-1890, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33021014

RESUMEN

A regiodivergent nickel-catalyzed hydrocyanation of a broad range of internal alkenes involving a chain-walking process is reported. When appropriate diastereomeric biaryl diphosphite ligands are applied, the same starting materials can be converted to either linear or branched nitriles with good yields and high regioselectivities. DFT calculations suggested that the catalyst architecture determines the regioselectivity by modulating electronic and steric interactions. In addition, moderate enantioselectivities were observed when branched nitriles were produced.

9.
Molecules ; 25(19)2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32987954

RESUMEN

The repetitive sequence of glutenin plays an important role in dough rheology; however, its interaction with wheat protein disulfide isomerase (wPDI) remains unclear. In this study, the conformations of wild type glutenin repetitive sequence (WRS) from the high molecular weight glutenin subunit (HMW-GS) 1Dx5, an artificially designed glutenin repetitive sequence (DRS) of which the amino acid composition is the same but the primary structure is different, and wPDI under different redox states were simulated. The molecular interactions between the aforementioned repetitive sequences with wPDI under different redox states were further investigated. The results indicated that the repetitive sequences bind to the b and b' domains of an "open", oxidized wPDI (wPDIO) which serves as the acceptor state of substrate. The repetitive sequence is partially folded (compressed) in wPDIO, and is further folded in the thermodynamically favored, subsequent conformational transition of wPDIO to reduced wPDI (wPDIR). Compared with the artificially designed one, the naturally designed repetitive sequence is better recognized and more intensively folded by wPDI for its later unfold as the molecular basis of dough extension.


Asunto(s)
Glútenes/química , Pliegue de Proteína , Triticum/química , Oxidación-Reducción , Dominios Proteicos
10.
Molecules ; 26(1)2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33396541

RESUMEN

Disulfide bonds play a pivotal role in maintaining the natural structures of proteins to ensure their performance of normal biological functions. Moreover, biological molecular assembly, such as the gluten network, is also largely dependent on the intermolecular crosslinking via disulfide bonds. In eukaryotes, the formation and rearrangement of most intra- and intermolecular disulfide bonds in the endoplasmic reticulum (ER) are mediated by protein disulfide isomerases (PDIs), which consist of multiple thioredoxin-like domains. These domains assist correct folding of proteins, as well as effectively prevent the aggregation of misfolded ones. Protein misfolding often leads to the formation of pathological protein aggregations that cause many diseases. On the other hand, glutenin aggregation and subsequent crosslinking are required for the formation of a rheologically dominating gluten network. Herein, the mechanism of PDI-regulated disulfide bond formation is important for understanding not only protein folding and associated diseases, but also the formation of functional biomolecular assembly. This review systematically illustrated the process of human protein disulfide isomerase (hPDI) mediated disulfide bond formation and complemented this with the current mechanism of wheat protein disulfide isomerase (wPDI) catalyzed formation of gluten networks.


Asunto(s)
Disulfuros/química , Retículo Endoplásmico/metabolismo , Glútenes/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Pliegue de Proteína , Animales , Glútenes/química , Humanos , Oxidación-Reducción , Proteína Disulfuro Isomerasas/química
11.
Angew Chem Int Ed Engl ; 59(17): 6785-6789, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32030844

RESUMEN

Enantioselective auto-tandem catalysis represents a challenging yet highlight attractive topic in the field of asymmetric catalysis. In this context, we describe a dual catalytic cycle that merges allylic cyanation and asymmetric hydrocyanation. The one-pot conversion of a broad array of allylic alcohols into their corresponding 1,3-dinitriles proceeds in good yield with high enantioselectivity. The products are densely functionalized and can be easily transformed to chiral diamines, dinitriles, diesters, and piperidines. Mechanistic studies clearly support a novel sequential cyanation/hydrocyanation pathway.

12.
Electrochem commun ; 100: 85-89, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31824230

RESUMEN

A low maintenance, "self-cleaning" electrochemical approach is evaluated for regeneration of dye-loaded granular activated carbon (GAC). To do so, batch experiments were conducted using a low-cost granular activated carbon/stainless steel mesh (GACSS) composite cathode and a stable Ti/mixed metal oxides (Ti/MMO) anode without the addition of oxidants or iron catalysts. The GACSS cathode supports simultaneous H2O2 electrogeneration via the in situ supplied O2 from Ti/MMO anode and the subsequent H2O2 activation for ·OH generation, thus enabling the cracking of dye molecules adsorbed on GAC and regenerating the GAC's sorption capacity. Results show that a prolonged electrochemical processing for 12h will achieve up to 88.7% regeneration efficiency (RE). While RE decreases with multi-cycle application, up to 52.3% could still be achieved after 10 adsorption-regeneration cycles. To identify the mechanism, experiments were conducted to measure H2O2 electrogeneration, H2O2 activation, and ·OH generation by various GAC samples. The dye-loaded GAC and GAC treated after 10 adsorption-regeneration cycles were still capable of ·OH generation, which contributes to effective "self-cleaning" and regeneration over multi-cycles.

13.
Phys Chem Chem Phys ; 21(18): 9181-9188, 2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-30916687

RESUMEN

Heteroatom-doped carbon materials have been proven to be very effective for gas adsorption. Herein, edge-carboxylated graphene nanoplatelets with gradient oxygen contents and consistent pore structures were used as model adsorbents to independently determine the effects of the oxygen functionalization of carbon materials on the SO2 adsorption. The OGnPs were obtained by employing a simple ball milling method using dry ice by which an oxygen content as high as 14.06 wt% could be achieved, resulting in a 20 times increase in SO2 adsorption capacity as compared to that of oxygen-free graphene nanoplatelets. Both the experiments and density functional theory calculations demonstrated that the enhanced SO2 adsorption on the oxygenated carbon surface had a physisorption nature, which provided new insights into the development of advanced carbon materials with heteroatom doping for gas molecule adsorption.

14.
Electrochim Acta ; 296: 317-326, 2019 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-30631212

RESUMEN

Major challenges for effective implementation of the Electro-Fenton (EF) water treatment process are that conventional efficient cathodes are relatively expensive, and H2O2 activation by Fe2+ may cause secondary pollution. Herein, we propose a low-cost activated carbon/stainless steel mesh (ACSS) composite cathode, where the SS mesh distributes the current and the AC simultaneously supports H2O2 electrogeneration, H2O2 activation, and organic compounds (OCs) adsorption. The oxygen-containing groups on the AC function as oxygen reduction reaction (ORR) sites for H2O2 electrogeneration; while the porous configuration supply sufficient reactive surface area for ORR. 8.9 mg/L H2O2 was obtained with 1.5 g AC at 100 mA under neutral pH without external O2 supply. The ACSS electrode is also effective for H2O2 activation to generate ‧OH, especially under neutral pH. Adsorption shows limited influence on both H2O2 electrogeneration and activation. The iron-free EF process enabled by the ACSS cathode is effective for reactive blue 19 (RB19) degradation. 61.5% RB19 was removed after 90 min and 74.3% TOC was removed after 720 min. Moreover, long-term stability test proved its relatively stable performance. Thus, the ACSS electrode configuration is promising for practical and cost-effective EF process for transformation of OCs in water.

15.
Chem Eng J ; 364: 428-439, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32581640

RESUMEN

Electrochemical synthesis of H2O2 offers a great potential for water treatment. However, a significant challenge is the development of efficient cathode materials for the process. Herein, we implement a practical electrochemical cathode modification to support efficient H2O2 electrogeneration via the reduction of dissolved anodic O2. Graphite felt (GF) is in situ anodically modified by electrode polarity reversal technique in an acid-free, low-conductivity electrolyte. The modified GF exhibits a significantly higher activity towards O2 reduction. Up to 183.3% higher H2O2 yield is obtained by the anodized GF due to the increased concentrations of oxygen-containing groups and the hydrophilicity of the surface, which facilitates electron and mass transfer between GF and the electrolyte. Another significant finding is the ability to produce H2O2 at a high yield under neutral pH and low current intensity by the modified GF (35% of the charge need to produce the same amount by unmodified GF). Long-term stability testing of the modified GF showed a decay in the electrode's activity for H2O2 production after 30 consecutive applications. However, the electrode regained its optimal activity for H2O2 production after a secondary modification by electrode polarity reversal. Finally, in situ electrochemically modified GF is more effective for removal of reactive blue 19 (RB19, 20 mg/L) and ibuprofen (IBP, 10 mg/L) by the electro-Fenton process. The modified GF removed 62.7% of RB19 compared to only 28.1% by the unmodified GF in batch reactors after 50 min. Similarly, 75.3% IBP is removed by the modified GF compared to 57.6% by the unmodified GF in a flow-through reactor after 100 min.

16.
Nano Lett ; 18(6): 3368-3376, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29708761

RESUMEN

To circumvent the imbalances of electrochemical kinetics and capacity between Li+ storage anodes and capacitive cathodes for lithium-ion capacitors (LICs), we herein demonstrate an efficient solution by boosting the capacitive charge-storage contributions of carbon electrodes to construct a high-performance LIC. Such a strategy is achieved by the in situ and high-level doping of nitrogen atoms into carbon nanospheres (ANCS), which increases the carbon defects and active sites, inducing more rapidly capacitive charge-storage contributions for both Li+ storage anodes and PF6- storage cathodes. High-level nitrogen-doping-induced capacitive enhancement is successfully evidenced by the construction of a symmetric supercapacitor using commercial organic electrolytes. Coupling a pre-lithiated ANCS anode with a fresh ANCS cathode enables a full-carbon LIC with a high operating voltage of 4.5 V and high energy and power densities thereof. The assembled LIC device delivers high energy densities of 206.7 and 115.4 Wh kg-1 at power densities of 0.225 and 22.5 kW kg-1, respectively, as well as an unprecedented high-power cycling stability with only 0.0013% capacitance decay per cycle within 10 000 cycles at a high power output of 9 kW kg-1.

17.
Electrochem commun ; 96: 37-41, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30546268

RESUMEN

The performance of the Electro-Fenton (EF) process for contaminant degradation depends on the rate of H2O2 production at the cathode via 2-electron dissolved O2 reduction. However, the low solubility of O2 (≈1×10-3 mol dm-3) limits H2O2 production. Herein, a novel and practical strategy that enables the synergistic utilization of O2 from the bulk electrolyte and ambient air for efficient H2O2 production is proposed. Compared with a conventional "submerged" cathode, the H2O2 concentration obtained using the "floating" cathode is 4.3 and 1.5 times higher using porous graphite felt (GF) and reticulated vitreous carbon (RVC) foam electrodes, respectively. This surprising enhancement results from the formation of a three-phase interface inside the porous cathode, where the O2 from ambient air is also utilized for H2O2 production. The contribution of O2 from ambient air varies depending on the cathode material and is calculated to be 76.7% for the GF cathode and 35.6% for the RVC foam cathode. The effects of pH, current, and mixing on H2O2 production are evaluated. Finally, the EF process enhanced by the "floating" cathode degraded 78.3% of the anti-inflammatory drug ibuprofen after 120 min compared to only 25.4% using a conventional "submerged" electrode, without any increase in the cost.

18.
Electrochim Acta ; 277: 185-196, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32153302

RESUMEN

The Electro-Fenton process for in-situ H2O2 electrogeneration is impacted by low O2 utilization efficiency (<0.1%) and the need of acid for pH adjustment. An electrochemical flow-through cell can develop localized acidic conditions, coupled with simultaneous formation and utilization of O2 to enhance H2O2 formation. Multiple electrode configurations using reticulated vitreous carbon (RVC) foam and Ti/mixed metal oxides (MMO) are proposed to identify the optimum conditions for H2O2 formation in batch and flow-through cells. A pH of 2.75±0.25 is developed locally in the flow-through cell that supports effective O2 reduction. Up to 9.66 mg/L H2O2 is generated in a 180 mL batch cell under 100 mA, at pH 2, and mixing at 350 rpm. In flow-through conditions, both flow rate and current significantly influence H2O2 production. A current of 120 mA produced 2.27 mg/L H2O2 under a flow rate of 3 mL/min in a 3-electrode cell with one RVC foam cathode at 60 min. The low current of 60 mA does not enable effective H2O2 production, while the high current of 250 mA produced less H2O2 due to parasitic reactions competing with O2 reduction. Higher flow rates decrease the retention time, but also increase the O2 mass transfer. Furthermore, 3-electrode flow-through cell with two RVC foam cathodes was not effective for H2O2 production due to the limited O2 supply for the secondary cathode. Finally, a coupled process that uses both O2 and H2 from water electrolysis is proposed to improve the H2O2 yield further.

19.
Chem Eng J ; 338: 709-718, 2018 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32153347

RESUMEN

Efficient H2O2 electrogeneration from 2-electron oxygen reduction reaction (ORR) represents an important challenge for environmental remediation application. H2O2 production is determined by 2-electron ORR as well as H2O2 decomposition. In this work, a novel strategy based on the systematical investigation on H2O2 decomposition pathways was reported, presenting a drastically improved bulk H2O2 concentration. Results showed that bulk phase disproportion, cathodic reduction, and anodic oxidation all contributed to H2O2 depletion. To decrease the extent of H2O2 cathodic reduction, the pulsed current was applied and proved to be highly effective to lower the extent of H2O2 electroreduction. A systematic study of various pulsed current parameters showed that H2O2 concentration was significantly enhanced by 61.6% under pulsed current of "2s ON + 2s OFF" than constant current. A mechanism was proposed that under pulsed current, less H2O2 molecules were electroreduced when they diffused from the porous cathode to the bulk electrolyte. Further results demonstrated that a proper pulse frequency was necessary to achieve a higher H2O2 production. Finally, this strategy was applied to Electro-Fenton (EF) process with ibuprofen as model pollutant. 75.0% and 34.1% ibuprofen were removed under pulsed and constant current at 10 min, respectively. The result was in consistent with the higher H2O2 and ·OH production in EF under pulsed current. This work poses a potential approach to drastically enhance H2O2 production for improved EF performance on organic pollutants degradation without making any changes to the system except for power mode.

20.
Molecules ; 23(9)2018 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-30227669

RESUMEN

A non-targeted volatile metabolomic approach based on the gas chromatography-quadrupole time of fight-mass spectrometry (GC-QTOF-MS) coupled with two different sample extraction techniques (solid phase extraction and solid phase microextraction) was developed. Combined mass spectra of blueberry wine samples, which originated from two different cultivars, were subjected to orthogonal partial least squares-discriminant analysis (OPLS-DA). Principal component analysis (PCA) reveals an excellent separation and OPLS-DA highlight metabolic features responsible for the separation. Metabolic features responsible for the observed separation were tentatively assigned to phenylethyl alcohol, cinnamyl alcohol, benzenepropanol, 3-hydroxy-benzenethanol, methyl eugenol, methyl isoeugenol, (E)-asarone, (Z)-asarone, and terpenes. Several of the selected markers enabled a distinction in secondary metabolism to be drawn between two blueberry cultivars. It highlights the metabolomic approaches to find out the influence of blueberry cultivar on a volatile composition in a complex blueberry wine matrix. The distinction in secondary metabolism indicated a possible O-methyltransferases activity difference among the two cultivars.


Asunto(s)
Arándanos Azules (Planta)/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Metabolómica/métodos , Vino/análisis , Biomarcadores/análisis , Análisis Discriminante , Frutas/química , Análisis de los Mínimos Cuadrados , Metaboloma , Anotación de Secuencia Molecular , Análisis de Componente Principal , Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA