Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Environ Sci Technol ; 57(6): 2538-2547, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36720085

RESUMEN

Appropriate inhibitors might play important roles in achieving ammonia retention in biological wastewater treatment and its reuse in agriculture. In this study, the feasibility of epsilon-poly-l-lysine (ε-PL) as a novel natural ammonia oxidation inhibitor was investigated. Significant inhibition (ammonia oxidation inhibition rate was up to 96.83%) was achieved by treating the sludge with ε-PL (400 mg/L, 12 h soaking) only once and maintaining for six cycles. Meanwhile, the organic matter and nitrite removal was not affected. This method was effective under the common environmental conditions of biological wastewater treatment. Metatranscriptome uncovered the possible action mechanisms of ε-PL. The ammonia oxidation inhibition was due to the co-decrease of Nitrosomonas abundance, ammonia oxidation genes, and the cellular responses of Nitrosomonas. Thauera and Dechloromonas could adapt to ε-PL by stimulating stress responses, which maintained the organic matter and nitrite removal. Importantly, ε-PL did not cause the enhancement of antibiotic resistance genes and virulent factors. Therefore, ε-PL showed a great potential of ammonia retention, which could be applied in the biological treatment of wastewater for agricultural reuse.


Asunto(s)
Polilisina , Aguas Residuales , Polilisina/farmacología , Amoníaco , Nitritos , Aguas del Alcantarillado
2.
Environ Res ; 212(Pt C): 113356, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35489476

RESUMEN

Metagenomic approach was applied to simultaneously reveal the antibiotic resistance genes (ARGs) and antibacterial biocide & metal resistance genes (BMRGs), and the corresponding microbial hosts with high mobility during aerobic granular sludge (AGS) formation process. The results showed that the relative abundance of BMRGs was 88-123 times that of ARGs. AGS process was easier to enrich BMRGs, leading to a greater risk of drug resistance caused by BMRGs than that by ARGs. The enrichments of ARGs and BMRGs in AGS were closely related to several enhanced microbial metabolisms (i.e., cell motility, transposase and ATP-binding cassette transporters) and their corresponding regulatory genes. Several enhanced KEGG Orthologs (KO) functions, such as K01995, K01996, K01997 and K02002, might cause a positive impact on the spread of ARGs and BMRGs, and the main contributors were the largely enriched glycogens accumulating organisms. The first dominant ARGs (adeF) was carried by lots of microbial hosts, which might be enriched and propagated mainly through horizontal gene transfer. Candidatus Competibacter denitrificans simultaneously harbored ARG (cmx) and Cu related RGs (corR). Many enriched bacteria contained simultaneously multiple BMRGs (copR and corR) and mobile genetic elements (integrons and plasmids), granting them high mobility capabilities and contributing to the spread of BMRGs. This study might provide deeper understandings of the proliferation and mobility of ARGs and BMRGs, importantly, highlighted the status of BMRGs, which laid the foundation for the controlling widespread of resistance genes in AGS.


Asunto(s)
Desinfectantes , Metales Pesados , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Genes Bacterianos , Aguas del Alcantarillado
3.
Environ Res ; 215(Pt 1): 114263, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36075475

RESUMEN

Antimicrobial resistance has been considered as a great threat to biosecurity and human health. And the transmission of antibiotic resistance genes (ARGs) by conjugated plasmid is a key factor in the prevalence of antimicrobial resistance. Paracetamol (PRC), one of nonopioid analgesics, is an extensively used antipyretic and mild analgesic worldwide available for numerous prescriptions. It was unclear whether PRC could promote the spread of ARGs. Here, it was demonstrated that PRC promoted intergenera conjugative plasmid transfer in an established conjugation model. Both donor and recipient strains treated by PRC emerged the variations of reactive oxygen species (ROS), SOS response and cell membrane permeability. Correspondingly, transcriptome analysis revealed that the gene expression involved in cell membrane permeability and SOS response was up-regulated significantly after PRC exposure. More directly, PRC also increased the expressions of conjugation related genes of trbG and trbP in donor. This study proved for the first time that PRC could enhance the intergenera conjugative plasmid transfer. Collectively, these findings manifested the potential threat associated with the existence of non-antibiotic substance PRC, which could provide an important insight into antimicrobial resistance spread.


Asunto(s)
Analgésicos no Narcóticos , Antipiréticos , Acetaminofén/farmacología , Antibacterianos , Transferencia de Gen Horizontal , Genes Bacterianos , Humanos , Plásmidos/genética , Especies Reactivas de Oxígeno
4.
Environ Res ; 206: 112606, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-34954146

RESUMEN

The partial nitrification-anammox (PN/A) process is a promising method for the treatment of municipal wastewater. It is necessary to clarify the responses of PN/A system to antimicrobial agent triclosan (TCS) widely existed in the influent of wastewater treatment plants. In this study, it was found that PN/A system was robust to cope with 0.5 mg/L TCS. Specifically, the control reactor reached 80% total nitrogen removal efficiency (TNRE) on day 107, while the reactor feeding with 0.5 mg/L TCS reached the same TNRE on day 84. The results of the activity test, high-throughput sequencing and DNA-based stable isotope probing showed that 0.5 mg/L TCS did not impede the performance of ammonia oxidizing archaea, ammonia oxidizing bacteria (Nitrosomonas) and anammox bacteria (Candidatus Brocadia and Ca. Kuenenia), but significant inhibited the nitrite oxidizing bacteria (Nitrospira and Ca. Nitrotoga) and denitrifying bacteria. The influent TCS led to the increase of EPS content and enrichment of four resistance genes (RGs) (intI1, sul1, mexB, and tnpA), which might be two principal mechanisms by which PN/A can resist TCS. In addition, functional bacteria carrying multiple RGs also contributed to the maintenance of PN/A system function. These findings improved the understandings of antimicrobial effects on the PN/A system.


Asunto(s)
Nitrificación , Triclosán , Oxidación Anaeróbica del Amoníaco , Reactores Biológicos , Matriz Extracelular de Sustancias Poliméricas , Nitrógeno , Oxidación-Reducción , Aguas del Alcantarillado , Triclosán/farmacología , Aguas Residuales
5.
Int J Environ Health Res ; 32(9): 2052-2064, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34102927

RESUMEN

Exposure to airborne particulate matter (PM2.5) is associated with cardiovascular diseases. In order to investigate the molecular mechanisms of air pollution-induced CVDs toxicity, human umbilical vein endothelial cells (HUVECs) were exposed to PM2.5 collected from January, 2016 winter in Beijing, China. We performed RNA sequencing to elucidate key molecular mechanism of PM 2.5-mediated toxicity in HUVECs. A total of 1753 genes, 864 up-regulated and 889 down-regulated, were observed to be differentially expressed genes (DEGs). Among these, genes involved in metabolic response, oxidative stress, inflammatory response, and vascular dysfunction were significantly differentially expressed (log2 FC > 4). The results were validated by quantitative real-time PCR (qPCR) and Western blot for CYP1B1, HMOX1, IL8, and GJA4. Pathway analysis revealed that DEGs were involved in the biological processes related to metabolism, inflammation, and host defense against environmental insults. This research is providing a further understanding of the mechanisms underlying PM2.5-induced cardiovascular diseases (CVDs).


Asunto(s)
Contaminantes Atmosféricos , Enfermedades Cardiovasculares , Contaminantes Atmosféricos/toxicidad , Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Material Particulado/toxicidad , Análisis de Secuencia de ARN
6.
J Environ Manage ; 270: 110872, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32507736

RESUMEN

Stable supply of nitrite is often a major obstacle for achieving mainstream anammox due to washout failure of nitrite oxidizers (NOB) at low influent ammonia of municipal wastewater. In this study, an integrated nitrification, partial denitrification and anammox (INPDA) as a one-stage mainstream nitrogen removal alternative was established in a low-oxygen sequencing batch biofilm reactor treating synthetic sewage. The overall nitrogen removal and nitrous oxide (N2O) emission were mainly investigated at 50 mg/L NH4+-N influent with a low carbon/nitrogen (C/N) of 2.5. Continuous operation demonstrated that as high as 98.8% NH4+-N and 94.1% TN were removed in SBBR system. Cyclic experiment verified sequential completion of nitrification, partial denitrification and anammox were responsible for high-rate TN removal. During one typical cycle, the trend of N2O emission was characterized by firstly rapid rise, then fluctuant decrease followed by rapid decrease and finally slow disappearance. The maximum N2O emission rate reached up to 6.7 µg/(L·min) occurred at 75 min. High-throughput sequencing revealed the co-existence of nitrifying, denitrifying and anammox species and large detection of key functional genes (Hzs, Hdh, Hao, Nor) in an oxygen-limited SBBR, thereby highly correlating nitrogen removal and N2O emission characteristics. Nitrogen metabolic pathways analysis further suggest denitratation(NO3--N to NO2--N)-based anammox is a main route for mainstream nitrogen removal. Moreover, N2O might be generated by both hydroxylamine oxidation step in nitrification and also heterotrophic denitrification pathway. The research findings provide more deep understandings of enhanced nitrogen removal and mitigated N2O footprint from a single mainstream anammox-based system.


Asunto(s)
Nitrificación , Aguas Residuales , Reactores Biológicos , Carbono , Desnitrificación , Nitrógeno , Óxido Nitroso , Oxidación-Reducción , Aguas del Alcantarillado
7.
J Environ Sci (China) ; 92: 211-223, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32430124

RESUMEN

Triclosan (TCS) is commonly found in wastewater treatment plants, which often affects biological treatment processes. The responses of nitrification, antibiotic resistome and microbial community under different TCS concentrations in activated sludge system were evaluated in this study. The experiment was conducted in a sequencing batch reactor (SBR) for 240 days. Quantitative PCR results demonstrated that the abundance of ammonium oxidizing bacteria could be temporarily inhibited by 1 mg/L TCS and then gradually recovered. And the abundances of nitrite oxidizing bacteria (NOB) under 2.5 and 4 mg/L TCS were three orders of magnitude lower than that of seed sludge, which accounted for partial nitrification. When the addition of TCS was stopped, the abundance of NOB increased. The mass balance experiments of TCS demonstrated that the primary removal pathway of TCS changed from adsorption to biodegradation as TCS was continuously added into the SBR system. Moreover, TCS increased the abundance of mexB, indicating the efflux pump might be the main TCS-resistance mechanism. As a response to TCS, bacteria could secrete more protein (PN) than polysaccharide. Three-dimensional excitation-emission matrix revealed that tryptophan PN-like substances might be the main component in PN to resist TCS. High-throughput sequencing found that the relative abundances of Paracoccus, Pseudoxanthomonas and Thauera increased, which could secrete extracellular polymeric substances (EPS). And Sphingopyxis might be the main TCS-degrading bacteria. Overall, TCS could cause partial nitrification and increase the relative abundances of EPS-secreting bacteria and TCS-degrading bacteria.


Asunto(s)
Nitrificación , Triclosán , Reactores Biológicos , Nitritos , Aguas del Alcantarillado , Aguas Residuales
8.
Zhonghua Nan Ke Xue ; 24(2): 133-137, 2018 Feb.
Artículo en Zh | MEDLINE | ID: mdl-30156072

RESUMEN

OBJECTIVE: To compare the safety and effectiveness of shovel-shaped electrode transurethral plasmakinetic enucleation of the prostate (PKEP) with those of plasmakinetic resection of the prostate (PKRP) in the treatment of benign prostatic hyperplasia (BPH). METHODS: We retrospectively analyzed the clinical data about 78 BPH patients received in Shanghai Ninth People's Hospital from June 2016 to January 2017, 39 treated by shovel-shaped electrode PKEP and the other 39 by PKRP. We observed the patients for 6 months postoperatively and compared the effects and safety of the two surgical strategies. RESULTS: No statistically significant difference was observed between the PKEP and PKRP groups in the operation time (ï¼»69.3 ± 8.8ï¼½ vs ï¼»72.2 ± 7.9ï¼½ min, P = 0.126), but the former, as compared with the latter, showed a markedly less postoperative loss of hemoglobin (ï¼»3.9 ± 2.8ï¼½ vs ï¼»13.9 ± 5.2ï¼½ g/L, P <0.001) and shorter bladder irrigation time (ï¼»12.5 ± 1.2ï¼½ vs ï¼»43.4 ± 2.8ï¼½ h, P <0.001), catheterization time (ï¼»64.0 ± 4.5ï¼½ vs ï¼»84.8 ± 3.0ï¼½ h, P <0.001) and hospital stay (ï¼»3.1 ± 0.3ï¼½ vs ï¼»5.5 ± 0.4ï¼½ d, P <0.001). There were no statistically significant differences between the PKEP and PKRP groups in the postoperative maximum urinary flow rate (Qmax) (ï¼»21.62 ± 1.07ï¼½ vs ï¼»21.03 ± 0.96ï¼½ ml/s, P = 0.12), International Prostate Symptoms Score (IPSS) (5.85 ± 0.90 vs 6.03 ± 0.81, P = 0.279), quality of life score (QoL) (2.0 ± 0.73 vs 2.28 ± 0.72, P = 0.09), postvoid residual urine volume (PVR) (ï¼»19.59 ± 6.01ï¼½ vs ï¼»20.21 ± 5.16ï¼½ ml, P = 0.629), or the incidence rates of urinary incontinence (2.56% ï¼»1/39ï¼½ vs 7.69% ï¼»3/39ï¼½, P >0.05) and other postoperative complications. CONCLUSIONS: Both PKEP and PKRP are effective methods for the treatment of BPH, but PKEP is worthier of clinical recommendation for a better safety profile, more thorough removal of the prostate tissue, less blood loss, shorter hospital stay, and better improved quality of life of the patient.


Asunto(s)
Electrodos , Hiperplasia Prostática/cirugía , Resección Transuretral de la Próstata/métodos , China , Electrodos/efectos adversos , Diseño de Equipo , Humanos , Masculino , Calidad de Vida , Estudios Retrospectivos , Resección Transuretral de la Próstata/instrumentación , Resultado del Tratamiento
9.
Appl Microbiol Biotechnol ; 98(7): 3339-54, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24318009

RESUMEN

The abundance and diversity of amoA genes of ammonia-oxidizing archaea (AOA) and bacteria (AOB) were investigated in ten wastewater treatment systems (WTSs) by polymerase chain reaction (PCR), cloning, sequencing, and quantitative real-time PCR (qPCR). The ten WTSs included four full-scale municipal WTSs, three full-scale industrial WTSs, and three lab-scale WTSs. AOB were present in all the WTSs, whereas AOA were detected in nine WTSs. QPCR data showed that AOB amoA genes (4.625 × 10(4)-9.99 × 10(9) copies g(-1) sludge) outnumbered AOA amoA genes (

Asunto(s)
Amoníaco/metabolismo , Archaea/clasificación , Bacterias/clasificación , Biota , Oxidorreductasas/genética , Aguas Residuales/microbiología , Archaea/enzimología , Archaea/genética , Archaea/metabolismo , Bacterias/enzimología , Bacterias/genética , Bacterias/metabolismo , ADN de Archaea/química , ADN de Archaea/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Datos de Secuencia Molecular , Oxidación-Reducción , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN
10.
J Hazard Mater ; 469: 133869, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38422733

RESUMEN

Whether it's necessary to extra chemical synthesis steps to modify nZVI in peroxymonosulfate (PMS) activation process are worth to further investigation. The 56 mg/L nZVI/153.65 mg/L PMS and 56 mg/L sulfidated nZVI (S-nZVI) (S/Fe molar ratio = 1:5)/153.65 mg/L PMS) processes could effectively attain 97.7% (with kobs of 3.7817 min-1) and 97.0% (with kobs of 3.4966 min-1) of the degradation of 20 mg/L sulfadiazine (SDZ) in 1 min, respectively. The nZVI/PMS system could quickly achieve 85.5% degradation of 20 mg/L SDZ in 1 min and effectively inactivate 99.99% of coexisting Pseudomonas. HLS-6 (5.81-log) in 30 min. Electron paramagnetic resonance tests and radical quenching experiments determined SO4•-, HO•, 1O2 and O2•- were responsible for SDZ degradation. The nZVI/PMS system could still achieve the satisfactory degradation efficiency of SDZ under the influence of humic acid (exceeded 96.1%), common anions (exceeded 67.3%), synthetic wastewater effluent (exceeded 90.7%) and real wastewater effluent (exceeded 78.7%). The high degradation efficiency of tetracycline (exceeded 98.9%) and five common disinfectants (exceeded 96.3%) confirmed the applicability of the two systems for pollutants removal. It's no necessary to extra chemical synthesis steps to modify nZVI for PMS activation to remove both chemical and biological pollutants.


Asunto(s)
Contaminantes Ambientales , Peróxidos , Contaminantes Químicos del Agua , Hierro , Sulfadiazina/farmacología , Aguas Residuales , Contaminantes Químicos del Agua/análisis
11.
Sci Total Environ ; 933: 173190, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38744392

RESUMEN

Phenacetin (PNCT) belongs to one of the earliest synthetic antipyretics. However, impact of PNCT on nitrifying microorganisms in wastewater treatment plants and its potential microbial mechanism was still unclear. In this study, PN could be initiated within six days by PNCT anaerobic soaking treatment (8 mg/L). In order to improve the stable performance of PN, 21 times of PNCT aerobic soaking treatment every three days was conducted and PN was stabilized for 191 days. After PN was damaged, ten times of PNCT aerobic soaking treatment every three days was conducted and PN was recovered after once soaking, maintained over 88 days. Ammonia oxidizing bacteria might change the dominant oligotype to gradually adjust to PNCT, and the increase of abundance and activity of Nitrosomonas promoted the initiation of PN. For nitrite-oxidizing bacteria (NOB), the increase of Candidatus Nitrotoga and Nitrospira destroyed PN, but PN could be recovered after once aerobic soaking illustrating NOB was not resistant to PNCT. KEGG and COG analysis suggested PNCT might disrupt rTCA cycle of Nitrospira, resulting in the decrease of relative abundance of Nitrospira. Moreover, PNCT did not lead to the sharp increase of absolute abundances of antibiotic resistance genes (ARGs), and the risk of ARGs transmission was negligible.


Asunto(s)
Nitrificación , Fenacetina , Eliminación de Residuos Líquidos , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/microbiología , Farmacorresistencia Microbiana/genética , Contaminantes Químicos del Agua/análisis , Bacterias/metabolismo
12.
J Hazard Mater ; 476: 135070, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38944986

RESUMEN

Dialkyldimethyl ammonium compound (DADMAC) is widely used in daily life as a typical disinfectant and often co-exists with the heavy metal zinc in sewage environments. This study investigated the effects of co-exposure to zinc (1 mg/L) and DADMAC (0.2-5 mg/L) on the performance, bacterial community, and resistance genes (RGs) in a partial sulfur autotrophic denitrification coupled with anaerobic ammonium oxidation (PSAD-Anammox) system in a sequencing batch moving bed biofilm reactor for 150 days. Co-exposure to zinc and low concentration (0.2 mg/L) DADMAC did not affect the nitrogen removal ability of the PASD-Anammox system, but increased the abundance and transmission risk of free RGs in water. Co-exposure to zinc and medium-to-high (2-5 mg/L) DADMAC led to fluctuations in and inhibition of nitrogen removal, which might be related to the enrichment of heterotrophic denitrifying bacteria dominated by Denitratisoma. Co-exposure to zinc and high concentration DADMAC (5 mg/L) stimulated the secretion of extracellular polymeric substances and increased the proliferation risk of intracellular RGs in sludge. This study provided insights into the application of PSAD-Anammox system and the ecological risks of wastewater containing zinc and DADMAC.

13.
J Hazard Mater ; 470: 134254, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38615644

RESUMEN

The existence of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) has been a global public environment and health issue. Due to the different cell structures, gram-positive/negative ARB exhibit various inactivation mechanisms in water disinfection. In this study, a gram-negative ARB Escherichia coli DH5α (E. coli DH5α) was used as a horizontal gene transfer (HGT) donor, while a gram-positive ARB Bacillus as a recipient. To develop an efficient and engineering applicable method in water disinfection, ARB and ARGs removal efficiency of Fe(VI) coupled peroxydisulfate (PDS) or peroxymonosulfate (PMS) was compared, wherein hydroxylamine (HA) was added as a reducing agent. The results indicated that Fe(VI)/PMS/HA showed higher disinfection efficiency than Fe(VI)/PDS/HA. When the concentration of each Fe(VI), PMS, HA was 0.48 mM, 5.15 log E. coli DH5α and 3.57 log Bacillus lost cultivability, while the proportion of recovered cells was 0.0017 % and 0.0566 %, respectively, and HGT was blocked. Intracellular tetA was reduced by 2.49 log. Fe(IV) and/or Fe(V) were proved to be the decisive reactive species. Due to the superiority of low cost as well as high efficiency and practicality, Fe(VI)/PMS/HA has significant application potential in ARB, ARGs removal and HGT inhibition, offering a new insight for wastewater treatment.


Asunto(s)
Transferencia de Gen Horizontal , Hierro , Peróxidos , Peróxidos/química , Hierro/química , Purificación del Agua/métodos , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Farmacorresistencia Bacteriana/genética , Desinfección/métodos , Sulfatos/química , Antibacterianos/farmacología , Antibacterianos/química , Bacillus/genética , Bacillus/efectos de los fármacos , Bacillus/metabolismo
14.
Bioresour Technol ; 395: 130390, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301944

RESUMEN

In this study, H2O2 (0.1 ‰) and NH2-MIL-101(Fe)-driven (150 mg/L) photo-Fenton-coupled anammox were proposed to simultaneously improve the removal efficiency of nitrogen and humic acid. Long-term experiments showed that the total nitrogen removal efficiency was increased by the photo-Fenton reaction to 91.9 ± 1.5 % by altering the bioavailability of refractory organics. Correspondingly, the total organic carbon removal efficiency was significantly increased. Microbial community analyses indicated that Candidatus_Brocadia maintained high activity during photo-Fenton reaction and was the most abundant genus in the reactor. Dissimilatory nitrate reduction to ammonium process and denitrification process were enhanced, resulting in reduced NO3--N production. The establishment of electron transfer between microorganisms and NH2-MIL-101 (Fe) improved the charge separation efficiency of the quantum dots and increased the intracellular adenosine triphosphate content of anammox bacteria. These results indicated that photo-Fenton-anammox process promoted the removal of nitrogen and refractory organics in one reactor which had good economic value and application prospects.


Asunto(s)
Compuestos de Amonio , Desnitrificación , Estructuras Metalorgánicas , Oxidación-Reducción , Nitrógeno , Peróxido de Hidrógeno , Oxidación Anaeróbica del Amoníaco , Electrones , Reactores Biológicos/microbiología , Aguas del Alcantarillado
15.
Sci Total Environ ; 930: 172715, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38663595

RESUMEN

Antibiotics and quaternary ammonium compounds (QACs) usually co-exist in wastewater treatment plants. Hence, three sequencing batch reactors were established and named as R1, R2 and R3, to investigate the effects of individual and combined exposure of different concentrations of ciprofloxacin (CIP) (0.2, 1.0 and 2.0 mg/L) and dialkyldimethyl ammonium compound (DADMAC) (0.4, 2.0 and 4.0 mg/L) on the performance, microbial community structures and resistance genes (RGs) in nitrifying system during 150 days. Results showed that CIP had a slight effect on ammonia oxidation activity, while 2.0 and 4.0 mg/L DADAMAC could obviously inhibit it, and the combination of CIP and DADMAC had a synergistic inhibitory effect. Besides, both CIP and DADMAC caused partial nitrification, and the order of nitrite accumulation rate was ranked as R3 > R2 > R1. The combination of CIP and DADMAC had an antagonistic effect on the increase of sludge particle size and α-Helix/(ß-Sheet + Random coil) was lowest in R3 (0.40). The combination of CIP and DADMAC synergistically stimulated most intracellular RGs in sludge, and the relative abundances of target RGs (e.g., qacEdelta1-01, qacH-01 and qnrS) at the end of operation in R3 were increased by 4.61-18.19 folds compared with those in CK, which were 1.34-5.57 folds higher than the R1 and R2. Moreover, the combination of CIP and DADMAC also promoted the transfer of RGs from sludge to water and enriched more potential hosts of RGs, further promoting the spread of RGs in nitrifying system. Thus, the combined pollution of CIP and DADMAC in wastewaters should attract more attentions.


Asunto(s)
Antibacterianos , Ciprofloxacina , Nitrificación , Eliminación de Residuos Líquidos , Ciprofloxacina/farmacología , Nitrificación/efectos de los fármacos , Antibacterianos/farmacología , Eliminación de Residuos Líquidos/métodos , Compuestos de Amonio Cuaternario , Contaminantes Químicos del Agua , Aguas Residuales , Reactores Biológicos , Farmacorresistencia Bacteriana/genética
16.
J Hazard Mater ; 470: 134132, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38554510

RESUMEN

The proliferation of antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) caused by antibiotic abuse has raised concerns about the global infectious-disease crisis. This study employed periodate (PI)/ferrate (VI) (Fe (VI)) system to disinfect Gram-negative ARB (Escherichia coli DH5α) and Gram-positive bacteria (Bacillus subtilis ATCC6633). The PI/Fe (VI) system could inactivate 1 × 108 CFU/mL of Gram-negative ARB and Gram-positive bacteria by 4.0 and 2.8 log in 30 min. Neutral and acidic pH, increase of PI dosage and Fe (VI) dosage had positive impacts on the inactivation efficiency of ARB, while alkaline solution and the coexistence of 10 mM Cl-, NO3-, SO42- and 20 mg/L humic acid had slightly negative impacts. The reactive species generated by PI/Fe (VI) system could disrupt the integrity of cell membrane and wall, leading to oxidative stress and lipid peroxidation. Intracellular hereditary substance, including DNA and ARGs (tetA), would leak into the external environment through damaged cells and be degraded. The electron spin resonance analysis and quenching experiments indicated that Fe (IV)/Fe (V) played a leading role in disinfection. Meanwhile, PI/Fe (VI) system also had an efficient removal effect on sulfadiazine, which was expected to inhibit the ARGs transmission from the source.


Asunto(s)
Bacillus subtilis , Desinfección , Hierro , Hierro/química , Desinfección/métodos , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Farmacorresistencia Bacteriana/genética , Desinfectantes/farmacología , Antibacterianos/farmacología , Genes Bacterianos/efectos de los fármacos
17.
J Hazard Mater ; 447: 130758, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36640510

RESUMEN

The chloroxylenol (PCMX) degrading strain was successfully isolated from sludge and identified as Rhodococcus ruber (R. ruber). Afterwards, a bioaugmentation system was constructed by seeding R. ruber into nitrifying sludge to fasten degradation efficiency of highly toxic PCMX from wastewater. Results showed that R. ruber presented high PCMX-degrading performance under aerobic conditions, 25 °C, pH 7.0 and inoculum sizes of 4% (v/v). These optimized conditions were used in subsequent bioaugmentation experiment. In bioaugmentation system, R. ruber could detoxify nitrifiers by degrading PCMX, and the content of polysaccharide in extracellular polymeric substances increased. The quantitative polymerase chain reaction results exhibited that the absolute abundance of 16S rRNA gene and ammonia oxidizing bacteria (AOB) slightly elevated in bioaugmentation system. After analyzing the results of high-throughput sequencing, it was found that the loaded R. ruber can colonize successfully and turn into dominant strains in sludge system. Molecular docking simulation showed that PCMX had a weaker suppressed effect on AOB than nitrite oxidizing bacteria, and R. ruber can alleviate the adverse effect. This study could provide a novel strategy for potential application in reinforcement of PCMX removal in wastewater treatment.


Asunto(s)
Rhodococcus , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Nitrificación , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Simulación del Acoplamiento Molecular , Rhodococcus/genética , Rhodococcus/metabolismo , Amoníaco/metabolismo , Reactores Biológicos/microbiología
18.
Sci Total Environ ; 892: 164500, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37257591

RESUMEN

To explore the effects of wastewater feeding modes on the formation of aerobic granular sludge (AGS) and the complex relationships between resistance genes and bacteria, two pilot-scale sequencing batch reactors (SBRs) were established. The SBR with influent wastewater introduced uniformly through pipes at bottom was designated as BSBR, and the SBR with inlet wastewater flowing directly from top was TSBR. BSBR formed dense AGS due to uniform wastewater feeding at bottom, while TSBR failed to cultivate AGS. Metagenomic sequencing illustrated that rapid growth of AGS in BSBR was accompanied with increase of antibiotic resistance genes (ARGs) abundance, but ARGs diminished when the size of AGS was stable. The ARGs continued to elevate in TSBR, and abundance of metal resistance genes (MRGs) was always higher than that in BSBR. Two reactors had markedly different bacterial community, microbes in BSBR owned stronger activity, conferred greater potential to proliferate. AdeF in two systems had the most complex gene-bacteria relationships which would undergo HGT within bacterial genus. The different feeding modes of wastewater directly led to the changing size of sludge, which caused knock-on effects of variations in the abundance of microbial communities and resistance genes. This study provided promising suggestions for the rapid cultivation of AGS and control of resistance genes at pilot-scale.


Asunto(s)
Microbiota , Aguas Residuales , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos , Reactores Biológicos/microbiología , Bacterias/genética , Antibacterianos
19.
Water Res ; 240: 120062, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37209516

RESUMEN

Benzethonium chloride (BEC) is one of emerging bacteriostatic agents. BEC-bearing wastewater generated during sanitary applications in food and medication is easily combined with other wastewater streams to flow into wastewater treatment plants. This study focused on the long-term (231 days) impacts of BEC on the sequencing moving bed biofilm nitrification system. Nitrification performance was tolerant to low concentration of BEC (≤ 0.2 mg/L), but the nitrite oxidation was severely inhibited when the concentration of BEC was 1.0-2.0 mg/L. Partial nitrification maintained about 140 days with nitrite accumulation ratio over 80%, mainly caused by the inhibition of Nitrospira, Nitrotoga and Comammox. Notably, BEC exposure in the system might cause the co-selection of antibiotic resistance genes (ARGs) and disinfectant resistance genes (DRGs), and the resistance of biofilm system to BEC was strengthened by efflux pumps mechanism (qacEdelta1 and qacH) and antibiotic deactivation mechanism (aadA, aac(6')-Ib and blaTEM). Extracellular polymeric substances secretion and BEC biodegradation were also contributed to the system microorganisms resisting BEC exposure. In addition, Klebsiella, Enterobacter, Citrobacter and Pseudomonas were isolated and identified as BEC degrading bacteria. The metabolites of N,N-dimethylbenzylamine, N-benzylmethylamine and benzoic acid were identified, and the biodegradation pathway of BEC was proposed. This study brought new knowledge about the fate of BEC in biological treatment units and laid a foundation for its elimination from wastewater.


Asunto(s)
Antiinfecciosos Locales , Bencetonio , Biopelículas , Nitrificación , Amoníaco/metabolismo , Bacterias/genética , Bacterias/metabolismo , Bencetonio/metabolismo , Reactores Biológicos , Oxidación-Reducción , Aguas Residuales
20.
Bioresour Technol ; 371: 128588, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36623575

RESUMEN

Benzalkyl dimethylammonium compounds (BACs) are generally applied as surfactants and disinfectants. In this study, the nitrification systems were exposed to different alkyl chain lengths (C12-C16) and different levels of BACs (0-5 mg/L), respectively, totally 120 days and to explore the chronic effect of BACs on resistance genes (RGs). RGs were classified into four fractions based on activated sludge properties. Ammonia oxidation performance were not significantly affected by BACs, whereas BACs increased the absolute abundance of most intracellular RGs in sludge (si-RGs). Under the exposure of BACs, extracellular RGs in water (we-RGs) showed a decrease trend and si-RGs tended to be converted to we-RGs. Tightly bound-Tyrosine side chain was significantly correlated with most we-RGs, and we-intI1 might contribute to the propagation of RGs. Therefore, the risk of transmission of different fractions of RGs in the nitrification system under the stress of BACs should be taken seriously.


Asunto(s)
Nitrificación , Aguas del Alcantarillado , Aguas del Alcantarillado/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA