Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Pharmacol Res ; 166: 105510, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33610720

RESUMEN

Cardiovascular disease (CVD), including heart failure, myocardial fibrosis and myocardial infarction, etc, remains one of the leading causes of mortality worldwide. Evidence shows that miRNA plays an important role in the pathogenesis of CVD. miR-29 family is one of miRNA, and over the past decades, many studies have demonstrated that miR-29 is involved in maintaining the integrity of arteries and in the regulation of atherosclerosis, especially in the process of myocardial fibrosis. Besides, heart failure, myocardial fibrosis and myocardial infarction are inseparable from the regulatory role of miR-29. Here, we comprehensively review recent studies regarding miR-29 and CVD, illustrate the possibility of miR-29 as a potential marker for prevention, treatment and prognostic observation.


Asunto(s)
Enfermedades Cardiovasculares/genética , MicroARNs/genética , Animales , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/terapia , Fibrosis , Regulación de la Expresión Génica , Humanos , MicroARNs/análisis , Miocardio/patología , Pronóstico
2.
Pharmacol Res ; 167: 105563, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33746053

RESUMEN

Macrophages are heterogeneous cells that have different physiological functions, such as chemotaxis, phagocytosis, endocytosis, and secretion of various factors. All physiological functions of macrophages are integral to homeostasis, immune defense and tissue repair. However, in several diseases, macrophages are recruited from the blood towards inflammatory sites. This process is called macrophage migration, which promotes deleterious disease progression. Macrophage migration is a key player in many inflammatory diseases, autoimmune diseases and cancers because it contributes to the accumulation of proinflammatory factors, the destruction of tissues and the development of tumors. Therefore, macrophage migration is proposed to be a potential therapeutic target. Macrophages migrate between two-dimensional (2D) and three-dimensional (3D) environments, implying that distinct migratory features and mechanisms are involved. Compared with the 2D migration of macrophages, 3D migration involves more complex variations in cellular morphology and dynamics. The structure of the extracellular matrix, a key factor, is modified in diseases that influence macrophage 3D migration. Macrophage 3D migration relates to disease pathology. Research that focuses on macrophage 3D migration is an emerging field and was reviewed in this article to indicate the molecular and cellular mechanisms of macrophage migration in 3D environments and to provide potential targets for controlling disease progression associated with this migration.


Asunto(s)
Movimiento Celular , Inflamación/patología , Macrófagos/patología , Animales , Antiinflamatorios/farmacología , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Movimiento Celular/efectos de los fármacos , Progresión de la Enfermedad , Descubrimiento de Drogas , Humanos , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/patología
3.
Pharmacol Res ; 167: 105513, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33617975

RESUMEN

A large number of macrophages in inflamed sites not only amplify the severity of inflammatory responses but also contribute to the deleterious progression of many chronic inflammatory diseases, autoimmune diseases and cancers. Macrophage migration is a prerequisite for their entry into inflammatory sites and their participation of macrophages in the pathologic processes. Inhibition of macrophage migration is therefore a potential anti-inflammatory mechanism. Moreover, alleviation of inflammation also prevents the macrophages infiltration. Sinomenine (SIN) is an alkaloid derived from the Chinese medicinal plant Sinomenium acutum. It has multiple pharmacological effects, including anti-inflammation, immunosuppression, and anti-arthritis. However, its anti-inflammatory molecular mechanisms and effect on macrophage migration are not fully understood. The purpose of this research was to investigate the pharmacological effects and the molecular mechanism of SIN on macrophage migration in vivo and in vitro as well as to elucidate its anti-inflammatory mechanisms associated with macrophage migration. Our results showed that SIN reduced the number of RAW264.7 cells migrating into inflammatory paws and blocked lipopolysaccharide (LPS)-induced RAW264.7 cells and bone marrow-derived macrophages (BMDMs) migration in vitro. Furthermore, SIN attenuated the 3D mesenchymal migration of BMDMs. The absence of macrophage migration after circulatory and periphery macrophages depletion led to a reduction in the severity of inflammatory response. In macrophages depleted (macrophages-/-) mice, as inflammatory severity decreased, RAW264.7 cells migration was suppressed. A non-obvious effect of SIN on the inflammatory response was found in macrophages-/- mice, while the inhibitory effect of SIN on RAW264.7 cells migration was still observed. Furthermore, the migration of RAW264.7 cells pre-treated with SIN was suppressed in normal mice. Finally, Src/focal adhesion kinase (FAK)/P130Cas axis activation, which supports macrophages mesenchymal migration, and iNOS expression, NO production, integrin αV and in integrin ß3 expressions, which promote Src/FAK/P130Cas activation, were down-regulated by SIN. However, SIN had no obvious effect on the expression of the monocyte chemoattractant protein-1 (MCP-1), which is an important chemokine for macrophage migration. These results indicated that SIN significantly inhibited macrophage mesenchymal migration by down-regulating on Src/FAK/P130Cas axis activation. There was a mutual regulatory correlation between the inflammatory response and macrophage migration, and the effects of SIN on macrophage migration were involved in its anti-inflammatory activity.


Asunto(s)
Antiinflamatorios/farmacología , Movimiento Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Macrófagos/efectos de los fármacos , Morfinanos/farmacología , Animales , Antiinflamatorios/química , Proteína Sustrato Asociada a CrK/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Morfinanos/química , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Sinomenium/química , Familia-src Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA