Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Arch Biochem Biophys ; 665: 69-78, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29373811

RESUMEN

Prostate cancer (PC) is the most common cancer in men; however, limited effect is obtained due to the therapy resistance. CASC2 acts as a tumor suppressor in human malignancies serving as a ceRNA for miRNAs; Sprouty2 (SPRY2), a key antagonist of RTK signaling, also serves as a tumor suppressor. Herein, CASC2 and SPRY2 expression was down-regulated in PC tissues and cell lines; the overexpression of CASC2 and SPRY2 could suppress PC cell proliferation, promote PC cell apoptosis, and enhance the sensitivity of PC cells to docetaxel. CASC2 positively regulated SPRY2 expression and inhibited downstream extracellular regulated protein kinases (ERK) signaling activation through SPRY2. By using online tools, miR-183 might be a direct target of CASC2, and might simultaneously bind to the 3'UTR of SPRY2. The direct binding between CASC2, miR-183 and SPRY2 was then validated; miR-183 inhibition enhanced the cytotoxicity of docetaxel on PC cells, which could be partially attenuated by SPRY2 knockdown. In summary, CASC2 competes with SPRY2 for miR-183 binding to rescue the expression of SPRY2 in PC cells, thus enhancing the sensitivity of PC cells to docetaxel through SPRY2 downstream ERK signaling pathway; CASC2 and SPRY2 might be novel adjuvants for docetaxel-based chemotherapy for PC.


Asunto(s)
Antineoplásicos/farmacología , Docetaxel/farmacología , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , MicroARNs/genética , Neoplasias de la Próstata/patología , ARN Largo no Codificante/genética , ARN/genética , Proteínas Supresoras de Tumor/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Neoplasias de la Próstata/genética
2.
Chem Soc Rev ; 47(12): 4581-4610, 2018 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-29682652

RESUMEN

The rapid development of solar cells (SCs) based on organic-inorganic hybrid metal triiodide perovskite (MTP) materials holds great promise for next-generation photovoltaic devices. The demonstrated power conversion efficiency of the SCs based on MTP (PSCs for short) has reached over 20%. An MTP material is a kind of soft ionic solid semiconductor. The intrinsic optoelectronic properties of MTP are greatly determined by several factors, such as the crystalline phase, doping type, impurities, elemental composition, and defects in its crystal structure. In the development of PSCs, a good understanding and smart engineering of the defects in MTP have been demonstrated to be a key factor for the fabrication of high-efficiency PSCs. In this review, we start with a brief introduction to the types of defects and the mechanisms for their formation in MTP. Then, the positive and negative impacts of defects on the important optoelectronic features of MTP are presented. The optoelectronic properties mainly include charge recombination, charge transport, ion migration, and structural stability. Moreover, commonly used techniques for the characterization of the defects in MTP are systematically summarized. Recent progress on the state-of-the-art defect engineering approaches for the optimization of PSC devices is also summarized, and we also provide some perspectives on the development of high-efficiency PSCs with long-term stability through the optimization of the defects in MTP.

3.
Chemphyschem ; 19(14): 1696-1700, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29667287

RESUMEN

All-inorganic double-metal perovskite materials have recently gained much attention due to their three dimensionality (3D) and non-toxic nature to replace lead-based perovskite materials. Among all those double perovskite materials, theoretical works have demonstrated that Cs2 AgBiBr6 shows high stability and possesses a suitable band gap for solar-cell applications. However, the film-forming ability of Cs2 AgBiBr6 is found to be the utmost challenge hindering its development in thin-film solar-cell devices. In this work, a high-quality Cs2 AgBiBr6 film with ultra-smooth morphology, micro-sized grains, and high crystallinity is realized via anti-solvent dropping technology and post-annealing at high temperature. After optimization, the first example of an inverted planar heterojunction solar-cell device based on Cs2 AgBiBr6 exhibits a power conversion efficiency of 2.23 % with VOC =1.01 V, JSC =3.19 mA/cm2 , and FF=69.2 %. Besides, the device shows no hysteresis and a high stability.

4.
Phys Chem Chem Phys ; 18(27): 18219-26, 2016 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-27332751

RESUMEN

Although reduced graphene oxide (rGO)-based photocatalyst composites have been intensively developed during the past few years, the influence of reduction extent of rGO on the photocatalytic performance of the rGO-based composite has virtually not been investigated due to some technical limitations, such as the poor water dispersibility of rGO and low reduction selectivity of the hydrothermal method, which make it difficult to control the reduction extent of rGO in these composites. Herein, we used a facile room-temperature method to synthesize Ag/AgX (X = Cl, Br)/rGO photocatalyst composites as a model to study the effect of reduction extent of rGO on the photocatalytic performance of the photocatalyst. It was found that the photocatalytic activities of both Ag/AgCl/PrGO and Ag/AgBr/PrGO systems had an optimized threshold of the reduction extent of photoreduced GO (PrGO). More importantly, due to the different conductive band values of AgCl and AgBr, the optimized thresholds in the two systems were at different PrGO reduction extents, based on which we proposed that the favorable energy band matching between AgX and PrGO in the two systems played a crucial role in obtaining high photocatalysis performance. Besides, the photocatalytic reaction of the Ag/AgBr based system was confirmed to be a pseudo-second-order kinetics reaction rather than pseudo-first-order kinetics reaction. The new insights presented in this work provided useful information on the design and development of a more sophisticated photocatalyst, and can also be applied to many other applications.

5.
Phys Chem Chem Phys ; 16(10): 4561-8, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24457425

RESUMEN

In this work, we report that the Ag-graphene composite (AGC) can effectively enhance the light harvesting and photoluminescence (PL) quenching efficiency of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene-vinylene] (MEH-PPV). Loading the AGC on MEH-PPV leads to improved light absorption ability and PL quenching efficiency, which is due to the strong interaction between localized surface plasmon resonance (LSPR)-activated Ag nanoparticles and the MEH-PPV molecule. Control experiment reveals that the combination of graphene and Ag nanoparticles achieves superior light absorptivity and PL quenching ability compared with individual graphene and Ag NPs. The exponential shape of the Stern-Volmer plot implies that both Ag and graphene in the AGC can offer the quenching pathway for the PL quenching process. We also found that the AGC with a broader LSPR absorption range is competitive in enhancing the light absorption ability and PL quenching efficiency of the MEH-PPV-AGC composite, because it can expand LSPR-induced light harvesting and PL quenching response to a wider absorption range.


Asunto(s)
Grafito/química , Nanopartículas/química , Polímeros/química , Plata/química , Compuestos de Vinilo/química , Luz , Luminiscencia , Nanopartículas/ultraestructura , Resonancia por Plasmón de Superficie
6.
Adv Mater ; : e2404185, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39161076

RESUMEN

Narrow-bandgap (NBG) Pb-Sn perovskites are ideal candidates as rear subcell in all-perovskite tandem solar cells. Because Pb-Sn perovskites contain multiple components, the rational regulation of vertical structure and both interfaces of the film is primarily crucial to achieve high-performing NBG perovskite solar cells (PSCs). Herein, a molecule anchoring strategy is developed to in situ construct Cs0.1MA0.3FA0.6Pb0.5Sn0.5I3 perovskite film with vertically aligned crystals and optimized interfaces. Specifically, l-alanine methyl ester is developed as an anchoring additive to induce the vertical crystal growth, while PEA2PbI3SCN film is introduced to promote the homogeneous crystallization at the buried interface via SCN- anchoring with cations. Further ethylenediamine dihalides (EDA(I/Cl)2) post-treatment leads to the gradient energy level alignment on the film surface. Pb-Sn PSCs based on such film show efficient charge transport and extraction, producing a champion power conversion efficiency (PCE) of 22.3% with an impressive fill factor of 82.14%. Notably, combining with semitransparent 1.78 eV wide-bandgap PSCs, the four-terminal all-perovskite tandem device achieves a PCE of 27.1%. This work opens up a new pathway to boost the performance of Pb-Sn PSCs and their tandem devices.

7.
Ther Hypothermia Temp Manag ; 13(3): 92-101, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36449377

RESUMEN

Intraoperative hypothermia is very common and harmful in adult patients undergoing laparoscopic surgery. A variety of active warming systems has received close attention and has been researched by related scholars. However, the relative efficacy of these systems and which active warming system is preferred for such patients remain unclear. The aim of this study was to compare and rank six active warming systems regarding intraoperative warming efficacy in adult patients undergoing laparoscopic surgery. Following the PRISMA 2020 guidelines, relevant randomized controlled trials (RCTs) on the efficacy of different active warming systems in warming adult patients undergoing laparoscopic surgery were searched from five English databases and three Chinese databases. The quality of the studies was assessed using the Cochrane Risk of Bias tool (RoB2). The outcome was the final intraoperative core temperature. We estimated direct effects by using pairwise meta-analysis, estimated relative effects and ranking with the consistency model to conduct an NetworkMeta-Analysis (NMA). We used GRADE (Grading of Recommendations Assessment, Development, and Evaluation) to assess the certainty of the evidence. Sensitivity analysis was performed to test the robustness of the results. This study is registered with PROSPERO, with number CRD42022309057. In total, 19 RCTs involving 6 active warming systems and comprising 1364 patients were included in this NMA. The NMA once again confirmed the validity of forced-air warming (FAW) systems compared with other active warming systems, and further showed that underbody FAW was associated with more remarkable warming efficacy in different types of FAW systems. NMA was used to perform an exhaustive comparison of the warming efficacy of six active warming systems and indicated that underbody FAW was most likely to be the most effective warming system in adult patients undergoing laparoscopic surgery; however, considering the sparsity of the network, our results should be cautiously interpreted. Furthermore, a large number of high-quality RCTs comparing the warming efficacy of different competitive active warming systems are needed.


Asunto(s)
Hipotermia Inducida , Hipotermia , Laparoscopía , Humanos , Adulto , Metaanálisis en Red , Hipotermia/prevención & control
8.
Inorg Chem ; 51(4): 2039-45, 2012 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-22288613

RESUMEN

The geometric, electronic structure, and thermodynamic stability of large gadolinium-containing endohedral metallofullerenes, Gd(2)@C(98), have been systematically investigated by comprehensive density functional theory calculations combined with statistical mechanics treatments. The Gd(2)@C(2)(230924)-C(98) structure, which satisfies the isolated-pentagon rule (IPR), is determined to possess the lowest energy followed with some stable non-IPR isomers. In order to clarify the relative stabilities at elevated temperatures, entropy contributions are taken into account on the basis of the Gibbs energy at the B3LYP level for the first time. Interestingly, a novel non-IPR Gd(2)@C(1)(168785)-C(98) isomer which has one pair of pentagon adjacency is more thermodynamically stable than the lowest energy IPR species within a wide temperature interval related to fullerene formation. Therefore, the Gd(2)@C(1)(168785)-C(98) is predicted to be the most proper isomer obtained experimentally, which is the largest non-IPR carbon cage found so far. Our findings demonstrate that interaction between metals and carbon cages could stabilize the fused pentagons effectively, and thus, the non-IPR isomers should not be ignored in some cases of endohedral metallofullerenes. The IR features of Gd(2)@C(98) are simulated to assist its future experimental characterization.


Asunto(s)
Fulerenos/química , Gadolinio/química , Isomerismo , Modelos Moleculares , Teoría Cuántica , Termodinámica
9.
Oncol Lett ; 24(4): 377, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36238848

RESUMEN

The present study aimed to clarify the role of microRNA (miR)-5590-3p in the progression of renal cell carcinoma (RCC) and investigate the underlying mechanisms. The expression levels of miR-5590-3p, Rho-associated protein kinase (ROCK)2 and ß-catenin in RCC cells were measured by reverse transcription-quantitative PCR and western blot analysis. Following overexpression of miR-5590-3p and ROCK2 by transfection of miR-5590-3p mimics and GV367-ROCK2, respectively, changes in the proliferation, migration and invasion of RCC cells were determined through colony-formation, wound-healing and Transwell assays, respectively. The direct binding interaction between miR-5590-3p and ROCK2, initially predicted using Targetscan, was validated by a dual-luciferase reporter assay. The results indicated that miR-5590-3p was downregulated in RCC. Overexpression of miR-5590-3p led to downregulation of ROCK2 and ß-catenin and inhibited the proliferation, migration and invasion of RCC cells. The dual-luciferase reporter assay confirmed the binding relationship between miR-5590-3p and ROCK2. Of note, overexpression of ROCK2 effectively reversed the regulatory effects of miR-5590-3p on RCC cells. In conclusion, miR-5590-3p inhibits the proliferation, migration and invasion of RCC cells by targeting ROCK2, which is a potential molecular biomarker and therapeutic target for RCC.

10.
Immunobiology ; 227(5): 152264, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36049364

RESUMEN

BACKGROUND: Despite the dysregulation and function of G-quadruplex-forming sequence containing lncRNA (GSEC) have been widely reported in human cancers, there are few available data revealing its role in sepsis. OBJECTIVE: To assess the expression and function of GSEC in the development of sepsis and its potential molecular mechanism. MATERIALS AND METHODS: A total of 78 sepsis patients, 55 non-sepsis intensive care unit patients, and 42 healthy individuals were enrolled in this study. The expression of GSEC was evaluated in plasma and macrophage cells with polymerase chain reaction. The inflammation response of sepsis patients and macrophage cells was analyzed with an enzyme-linked immunosorbent assay. The diagnostic and prognostic value of GSEC in sepsis patients were estimated by receiver operator curve (ROC) and Cox analysis. The molecular mechanism underlying the function of GSEC was investigated in RAW264.7 cell with luciferase reporter assay and cell transfection. RESULTS: Significant upregulation of GSEC was observed in sepsis patients' plasma, which could discriminate sepsis patients from healthy and non-sepsis individuals. Upregulation of GSEC was positively correlated with inflammation cytokine levels and adverse prognosis of sepsis patients. In vitro, GSEC was found to modulate the expression level of miR-873-3p, which mediated the regulatory effect of GSEC on the inflammation and proliferation of RAW264.7. CONCLUSION: Upregulated GSEC could serve as a biomarker of sepsis pathogenesis and development. GSEC regulates the inflammation and proliferation of macrophage cells through modulating miR-873-3p.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Sepsis , Animales , Proliferación Celular , Humanos , Inflamación/metabolismo , Macrófagos/metabolismo , Ratones , MicroARNs/genética , Pronóstico , Células RAW 264.7 , ARN Largo no Codificante/genética , Sepsis/diagnóstico , Sepsis/genética
11.
ACS Appl Mater Interfaces ; 14(38): 43362-43371, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36112767

RESUMEN

Owing to narrow band gap and low toxicity, tin-lead (Sn-Pb) hybrid perovskites have shown great potential in photovoltaic applications, and the highest power conversion efficiency (PCE) of Sn-Pb perovskite solar cells (PSCs) has recently reached 23.6%. However, it is still challenging to prepare Sn-Pb films in open-air condition due to the Sn2+ oxidation of the precursor solution under this condition. In this work, we report the stabilizing of the Sn-Pb perovskite precursor solution by using ionic liquid methylammonium acetate (MAAc) as the solvent, which enables the fabrication of Sn-Pb films in air. MAAc is found to coordinate with the Sn-Pb precursor via abundant hydrogen bonding, which stabilizes the colloids and protects the Sn2+ stability in the precursor solution in air. Therefore, the durability of the Sn-Pb precursor solution based on the MAAc solvent is greatly improved, which enables the fabrication of efficient PSCs and achieves a champion PCE of ∼16% with robust device stability. Moreover, due to the chemical interactions of MAAc with Sn-Pb perovskites, the Pb leakage is also suppressed in the MAAc-based Sn-Pb PSCs. This work demonstrates a feasible strategy for reliable fabrication of Sn-Pb PSCs, which could also be applied in many other optoelectronic devices.

12.
Cell Cycle ; 21(4): 340-351, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34974812

RESUMEN

Drug resistance is a significant challenge in the present treatment regimens of renal cell carcinoma (RCC). Our previous study confirmed that nc886 functions as an oncogene in RCC. Nevertheless, the role and underlying mechanism of nc886 in RCC drug resistance are unclear. In the present study, Sunitinib and Everolimus treatment, respectively, downregulated nc886 expression in a dose-dependent manner in all four renal cancer cell lines. Nc886 overexpression in 786-O cells and ACHN cells significantly reduced the sensitivity of cancer cells to both Sunitinib and Everolimus treatment, respectively, by promoting cell viability and inhibiting cell apoptosis, whereas nc886 silencing increased cancer cell sensitivity. In renal cancer cell line with the highest drug-resistance, 786-O cells, Sunitinib, or Everolimus treatment enhanced the cellular EMT and was further enhanced by nc886 overexpression while attenuated by nc886 silencing. In 786-O cells, nc886 overexpression significantly promoted EMT, ROCK2 phosphorylation, and ß-catenin nucleus translocation under Sunitinib or Everolimus treatment. Moreover, ROCK2 silencing significantly reversed the effects of nc886 overexpression on EMT, ROCK2 phosphorylation, and ß-catenin nucleus translocation, as well as drug-resistant renal cancer cell viability and apoptosis. In conclusion, it was demonstrated that nc886 promotes renal cancer cell proliferation, migration, and invasion, as demonstrated previously. nc886 also promotes renal cancer cell drug-resistance to Sunitinib or Everolimus by promoting EMT through Rock2 phosphorylation-mediated nuclear translocation of ß-catenin.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Proliferación Celular , Transición Epitelial-Mesenquimal , Everolimus/farmacología , Femenino , Humanos , Neoplasias Renales/patología , Masculino , Fosforilación , Transducción de Señal , Sunitinib/farmacología , Sunitinib/uso terapéutico , beta Catenina/metabolismo , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/farmacología , Quinasas Asociadas a rho/uso terapéutico
13.
J Transl Med ; 9: 85, 2011 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-21649913

RESUMEN

BACKGROUND: Early detection of mixed aerobic-anaerobic infection has been a challenge in clinical practice due to the phenotypic changes in complex environments. Surface plasmon resonance (SPR) biosensor is widely used to detect DNA-DNA interaction and offers a sensitive and label-free approach in DNA research. METHODS: In this study, we developed a single-stranded DNA (ssDNA) amplification technique and modified the traditional SPR detection system for rapid and simultaneous detection of mixed infections of four pathogenic microorganisms (Pseudomonas aeruginosa, Staphylococcus aureus, Clostridium tetani and Clostridium perfringens). RESULTS: We constructed the circulation detection well to increase the sensitivity and the tandem probe arrays to reduce the non-specific hybridization. The use of 16S rDNA universal primers ensured the amplification of four target nucleic acid sequences simultaneously, and further electrophoresis and sequencing confirmed the high efficiency of this amplification method. No significant signals were detected during the single-base mismatch or non-specific probe hybridization (P < 0.05). The calibration curves of amplification products of four bacteria had good linearity from 0.1 nM to 100 nM, with all R(2) values of >0.99. The lowest detection limits were 0.03 nM for P. aeruginosa, 0.02 nM for S. aureus, 0.01 nM for C. tetani and 0.02 nM for C. perfringens. The SPR biosensor had the same detection rate as the traditional culture method (P < 0.05). In addition, the quantification of PCR products can be completed within 15 min, and excellent regeneration greatly reduces the cost for detection. CONCLUSIONS: Our method can rapidly and accurately identify the mixed aerobic-anaerobic infection, providing a reliable alternative to bacterial culture for rapid bacteria detection.


Asunto(s)
Infecciones Bacterianas/diagnóstico , Resonancia por Plasmón de Superficie/métodos , Bacterias/genética , Bacterias/aislamiento & purificación , Secuencia de Bases , Calibración , Electroforesis en Gel de Agar , Humanos , Límite de Detección , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Coloración y Etiquetado
14.
Adv Mater ; 33(12): e2003615, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33586290

RESUMEN

While halide perovskites (HPs) have achieved enormous success in the field of optoelectronic applications, much attention has been recently drawn to the unique polarization sensitivity of HPs, either intrinsic or extrinsic, which makes HPs a potential candidate for innovative applications in directly polarized luminescence and detection. Herein, the research status in the field of polarization-sensitive HPs, including linear polarization and circular polarization, is comprehensively summarized. To evaluate the effectiveness of HPs in generating and detecting linearly or circularly polarized light, the principles and characterization methods of polarized luminescence and detection are introduced. Sequentially, the state-of-the-art development of the strategies that induce the linear or circular polarization characteristics of HPs is systematically reviewed, based on which the application of polarization-sensitive HPs in the field of polarization luminescence and detection are summarized. Moreover, the current challenges and opportunities are discussed, and prospects of the future development in this promising field are outlined.

15.
Adv Mater ; 33(14): e2005410, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33656209

RESUMEN

Solar cells based on emerging organic-inorganic hybrid perovskite materials have reached certified power conversion efficiency as high as 25.5%, showing great potential in the next generation of photovoltaics toward large-scale industrialization. The most competitive feature of perovskite solar cells (PSCs) is that the perovskite light absorber can be fabricated by a low-cost solution method. For the solution method, the characteristics of the solvent play a key role in determining the crystallization kinetics, growth orientation, and optoelectronic properties of the perovskite film. Although significant progress has been made in the field of solvent engineering in PSCs, it is still challenging for the solution method to sustainably produce industrial-scale PSCs for future commercialization applications. Herein, the advanced progress of solvent engineering of precursor solution in terms of coordination regulation and toxicity reduction is highlighted. The physical and chemical characteristics of different solvents in reducing the toxicity of the solvent system, regulating the coordination property of the precursor solution, controlling the film-forming process of the perovskite film, and adjusting the photovoltaic performance of the PSC are systematically discussed. Lastly, important perspectives on solvent engineering of the perovskite precursor solution toward future industrial production of high-performance PSCs are provided.

16.
ACS Nano ; 15(4): 7649-7658, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33871962

RESUMEN

Accurate and rapid blood typing plays a vital role in a variety of biomedical and forensic scenarios, but recognizing weak agglutination remains challenging. Herein, we demonstrated a flipping identification with a prompt error-discrimination (FLIPPED) platform for automatic blood group readouts. Bromocresol green dye was exploited as a characteristic chromatography indicator for the differentiation of plasma from whole blood by presenting a teal color against a brown color. After integrating these color changes into a quick-response (QR) code, prompt typing of ABO and Rhesus groups was automatically achieved and data could be uploaded wirelessly within 30 s using a commercially available smartphone to facilitate blood cross-matching. We further designed a color correction model and algorithm to remove potential errors from scanning angles and ambient light intensities, by which weak agglutination could be accurately recognized. With comparable accuracy and repeatability to classical column assay in grouping 450 blood samples, the proposed approach further demonstrates to be a versatile sample-to-result platform for clinical diagnostics, food safety, and environmental monitoring.


Asunto(s)
Tipificación y Pruebas Cruzadas Sanguíneas , Teléfono Inteligente
17.
ChemSusChem ; 13(24): 6477-6497, 2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-32902919

RESUMEN

Recently, the power conversion efficiency (PCE) of perovskite solar cells (PSC) based on organic-inorganic hybrid Pb halide perovskites has reached 25.2 %. However, the toxicity of Pb has still been a main concern for the large-scale commercialization of Pb-based PSCs. Efforts have been made during the past few years to seek eco-friendly Pb-free perovskites, and it is a growing consensus that Sn is the best choice as Pb alternative over any other Pb-free metal elements. Among Sn-based perovskites, all-inorganic cells are promising candidates for PSCs owing to their more suitable bandgap, better stability, and higher charge mobility compared to the organic-inorganic hybrid counterparts. However, the poor phase stability of all-inorganic Sn-based perovskites (AISPs) and low PCE of their PSCs are most challenging in the field at present. Herein, recent developments on PSCs based on AISPs, including CsSnX3 and Cs2 SnX6 (X=Br, I), are comprehensively reviewed. Primarily, the intrinsic characteristics of the two AISPs are overviewed, including crystallographic property, band structure, charge carrier property, and defect property. Sequentially, state-of-the-art progress, regarding the photovoltaic application of AISPs as light absorber, is summarized. At last, current challenges and future opportunities of AISP-based PSCs are also discussed.

18.
Oncol Lett ; 16(4): 5291-5298, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30250598

RESUMEN

Prostate cancer (PCa) exhibits a high incidence among men, but there is no effective and non-invasive biomarker for the diagnosis of PCa, and the pathogenesis of PCa remains unclear. The present study identified that miR-27a was significantly overexpressed in the tumor tissues and sera of patients with PCa. In addition, high serum levels of miR-27a were correlated with poor survival in patients with PCa. Receiver-operating characteristic curves analysis demonstrated that the serum levels of miR-27a exhibited a high area under the curve value. Furthermore, miR-27a mimics or inhibitors significantly promoted or repressed the proliferation of PCa cells, respectively. In addition, it was identified that the expression of Sprouty2 (SPRY2) was inversely correlated with the expression of miR-27a in PCa tissues. The knockdown or overexpression of SPRY2 promoted or suppressed the proliferation of PCa cells, respectively, and the overexpression of SPRY2 inhibited the increased proliferation and cell cycle distribution of PCa cells mediated by miR-27a mimics. Taken together, these data indicated that the serum levels of miR-27a may be a novel and non-invasive biomarker for the diagnosis and prognosis of patients with PCa, and miR-27a/SPRY2 may be a therapeutic target for the treatment of PCa.

19.
J Phys Chem Lett ; 9(24): 6999-7006, 2018 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-30499301

RESUMEN

The instability issue of Pb-free Sn-based perovskite is one of the biggest challenges for its application in optoelectronic devices. Herein, a structural regulation strategy is demonstrated to regulate the geometric symmetry of formamidiniumtin iodide (FASnI3) perovskite. Experimental and theoretical works show that the introduction of cesium cation (Cs+) could improve the geometric symmetry, suppress the oxidation of Sn2+, and enhance the thermodynamical structural stability of FASnI3. As a result, the inverted planar Cs-doped FASnI3-based perovskite solar cell (PSC) is shown to maintain 90% of its initial power-conversion efficiency (PCE) after 2000 h stored in N2, which is the best durability to date for 3D Sn-based PSCs. Most importantly, the air, thermal, and illumination stabilities of the PSCs are all improved after Cs doping. The PCE of the Cs-doped PSC shows a 63% increase compared to that of the control device (from 3.74% to 6.08%) due to the improved quality of the Cs-doped FASnI3 film.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA