Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 17(8): e1009727, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34407079

RESUMEN

Vps13 family proteins are proposed to function in bulk lipid transfer between membranes, but little is known about their regulation. During sporulation of Saccharomyces cerevisiae, Vps13 localizes to the prospore membrane (PSM) via the Spo71-Spo73 adaptor complex. We previously reported that loss of any of these proteins causes PSM extension and subsequent sporulation defects, yet their precise function remains unclear. Here, we performed a genetic screen and identified genes coding for a fragment of phosphatidylinositol (PI) 4-kinase catalytic subunit and PI 4-kinase noncatalytic subunit as multicopy suppressors of spo73Δ. Further genetic and cytological analyses revealed that lowering PI4P levels in the PSM rescues the spo73Δ defects. Furthermore, overexpression of VPS13 and lowering PI4P levels synergistically rescued the defect of a spo71Δ spo73Δ double mutant, suggesting that PI4P might regulate Vps13 function. In addition, we show that an N-terminal fragment of Vps13 has affinity for the endoplasmic reticulum (ER), and ER-plasma membrane (PM) tethers localize along the PSM in a manner dependent on Vps13 and the adaptor complex. These observations suggest that Vps13 and the adaptor complex recruit ER-PM tethers to ER-PSM contact sites. Our analysis revealed that involvement of a phosphoinositide, PI4P, in regulation of Vps13, and also suggest that distinct contact site proteins function cooperatively to promote de novo membrane formation.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Esporas Fúngicas/genética , 1-Fosfatidilinositol 4-Quinasa/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Portadoras/genética , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Membranas/metabolismo , Membranas Mitocondriales/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
2.
J Sci Food Agric ; 104(9): 5603-5613, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38363126

RESUMEN

BACKGROUND: Acidic lipases with high catalytic activities under acidic conditions have important application values in the food, feed and pharmaceutical industries. However, the availability of acidic lipases is still the main obstacle to their industrial applications. Although a novel acidic lipase Rasamsonia emersonii (LIPR) was heterologously expressed in Escherichia coli, the expression level was unsatisfactory. RESULTS: To achieve the high-efficiency expression and secretion of LIPR in Pichia pastoris GS115, the combinatorial optimization strategy was adopted including gene codon preference, signal peptide, molecular chaperone co-expression and disruption of vacuolar sorting receptor VPS10. The activity of the combinatorial optimization engineered strain in a shake flask reached 1480 U mL-1, which was 8.13 times greater than the P. pastoris GS115 parental strain. After high-density fermentation in a 5-L bioreactor, the highest enzyme activity reached as high as 11 820 U mL-1. LIPR showed the highest activity at 40 °C and pH 4.0 in the presence of Ca2+ ion. LIPR exhibited strong tolerance to methanol, indicating its potential application in biodiesel biosynthesis. Moreover, the gastrointestinal digestion simulation results demonstrated that LIPR was tolerant to pepsin and trypsin, but its activity was inhibited by sodium taurodeoxycholate. CONCLUSION: This study provided an effective approach for the high expression of acidic lipase LIPR. LIPR was more appropriate for lipid digestion in the stomach than in intestine according to the gastrointestinal digestion simulation results. © 2024 Society of Chemical Industry.


Asunto(s)
Digestión , Proteínas Fúngicas , Lipasa , Lipasa/genética , Lipasa/metabolismo , Lipasa/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/enzimología , Concentración de Iones de Hidrógeno , Saccharomycetales/genética , Saccharomycetales/enzimología , Saccharomycetales/metabolismo , Expresión Génica , Estabilidad de Enzimas , Pichia/genética , Pichia/metabolismo , Humanos , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Modelos Biológicos , Fermentación
3.
J Nanobiotechnology ; 21(1): 175, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37264420

RESUMEN

BACKGROUND: Congenital disorders of glycosylation (CDGs) are genetic diseases caused by gene defects in glycan biosynthesis pathways, and there is an increasing number of patients diagnosed with CDGs. Because CDGs show many different clinical symptoms, their accurate clinical diagnosis is challenging. Recently, we have shown that liposome nanoparticles bearing the ALG1-CDG and PMM2-CDG biomarkers (a tetrasaccharide: Neu5Ac-α2,6-Gal-ß1,4-GlcNAc-ß1,4-GlcNAc) stimulate a moderate immune response, while the generated antibodies show relatively weak affinity maturation. Thus, mature antibodies with class switching to IgG are desired to develop high-affinity antibodies that may be applied in medical applications. RESULTS: In the present study, a liposome-based vaccine platform carrying a chemoenzymatic synthesized phytanyl-linked tetrasaccharide biomarker was optimized. The liposome nanoparticles were constructed by dioleoylphosphatidylcholine (DOPC) to improve the stability and immunogenicity of the vaccine, and adjuvanted with the NKT cell agonist PBS57 to generate high level of IgG antibodies. The results indicated that the reformulated liposomal vaccine stimulated a stronger immune response, and PBS57 successfully induce an antibody class switch to IgG. Further analyses of IgG antibodies elicited by liposome vaccines suggested their specific binding to tetrasaccharide biomarkers, which were mainly IgG2b isotypes. CONCLUSIONS: Immunization with a liposome vaccine carrying a carbohydrate antigen and PBS57 stimulates high titers of CDG biomarker-specific IgG antibodies, thereby showing great potential as a platform to develop rapid diagnostic methods for ALG1-CDG and PMM2-CDG.


Asunto(s)
Células T Asesinas Naturales , Vacunas , Humanos , Liposomas , Cambio de Clase de Inmunoglobulina , Células T Asesinas Naturales/metabolismo , Oligosacáridos , Adyuvantes Inmunológicos , Biomarcadores/metabolismo , Inmunoglobulina G , Inmunidad
4.
J Sci Food Agric ; 103(1): 339-348, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35871484

RESUMEN

BACKGROUND: Rare sugars have become promising 'sugar alternatives' because of their low calories and unique physiological functions. Among the family of rare sugars, d-allulose is one of the sugars attracting interest. Ketose 3-epimerases (KEase), including d-tagatose 3-epimerase (DTEase) and d-allulose 3-epimerase (DAEase), are mainly used for d-allulose production. RESULTS: In this study, a putative xylose isomerase from Caballeronia insecticola was characterized and identified as a novel DAEase. Caballeronia insecticola DAEase displayed prominent enzymatic properties, and 150 g L-1 d-allulose was produced from 500 g L-1 d-fructose in 45 min with a conversion rate of 30% and high productivity of 200 g L-1 h-1 . Furthermore, DAEase was employed in a phosphorylation-dephosphorylation cascade reaction, which significantly increased the conversion rate of d-allulose. Under optimized conditions, the conversion rate of d-allulose was approximately 100% when the concentration of d-fructose was 50 mmol L-1 . CONCLUSION: This research described a very beneficial and facile approach for d-allulose production based on C. insecticola DAEase. © 2022 Society of Chemical Industry.


Asunto(s)
Fructosa , Racemasas y Epimerasas , Racemasas y Epimerasas/genética , Concentración de Iones de Hidrógeno , Fructosa/química
5.
Yi Chuan ; 45(8): 669-683, 2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37609818

RESUMEN

In human cells, there are more than 146 glycosylphosphatidylinositol-anchored proteins (GPI-APs), including receptors, ligands, adhesion molecules and enzymes. The proteins are associated with membrane microdomains called lipid rafts through GPI, and plays a variety of important biological functions. At present, plenty of studies have been carried out on the biosynthesis of GPI-APs. The biosynthesis of GPI-APs requires at least 20 steps, and more than 40 GPI biosynthetic genes have been identified. However, it remains unclear how expression of GPI-AP related genes is regulated in normal and cancer tissues. In this study, we utilized gene expression data from both the TCGA database and GTEx portal to analysis the gene expression involved in GPI-AP biosynthesis and encoding GPI-APs in normal and cancer tissues. In order to perform a comprehensive analysis, we employed the GlycoMaple, a tool that is specifically designed to analyze glycosylation pathways. The results showed that compared with normal tissues, the expression of genes involved in GPI-AP biosynthesis in cancer tissues such as early glioma, glioblastoma multiforme, pancreatic cancer, testicular germ cell carcinoma, skin primary cutaneous melanoma and skin metastatic cutaneous melanoma, was changed significantly. Particularly, the expression of PIGY in these six cancers was increased. In addition, the expression of CD14, a GPI-AP gene, was increased in these six cancers. The expression of GAS1, GPC2 and GPC4 was increased only in early glioma and glioblastoma multiforme indicating that some GPI-APs such as GAS1 can be used as biomarkers of glioma. This study provides new insights into the expression of GPI-AP related genes in normal and cancer tissues, and lays a solid foundation for the development of GPI-APs as biomarkers.


Asunto(s)
Glioblastoma , Glioma , Melanoma , Neoplasias Cutáneas , Humanos , Glicosilfosfatidilinositoles/genética , Melanoma Cutáneo Maligno
6.
J Biol Chem ; 295(48): 16393-16410, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-32967966

RESUMEN

The protein folding and lipid moiety status of glycosylphosphatidylinositol-anchored proteins (GPI-APs) are monitored in the endoplasmic reticulum (ER), with calnexin playing dual roles in the maturation of GPI-APs. In the present study, we investigated the functions of calnexin in the quality control and lipid remodeling of GPI-APs in the ER. By directly binding the N-glycan on proteins, calnexin was observed to efficiently retain GPI-APs in the ER until they were correctly folded. In addition, sufficient ER retention time was crucial for GPI-inositol deacylation, which is mediated by post-GPI attachment protein 1 (PGAP1). Once the calnexin/calreticulin cycle was disrupted, misfolded and inositol-acylated GPI-APs could not be retained in the ER and were exposed on the plasma membrane. In calnexin/calreticulin-deficient cells, endogenous GPI-anchored alkaline phosphatase was expressed on the cell surface, but its activity was significantly decreased. ER stress induced surface expression of misfolded GPI-APs, but proper GPI-inositol deacylation occurred due to the extended time that they were retained in the ER. Our results indicate that calnexin-mediated ER quality control systems for GPI-APs are necessary for both protein folding and GPI-inositol deacylation.


Asunto(s)
Calnexina/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Oligosacáridos/metabolismo , Pliegue de Proteína , Calnexina/genética , Membrana Celular/genética , Retículo Endoplásmico/genética , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Oligosacáridos/genética , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo
7.
Acta Oncol ; 60(6): 735-743, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33720799

RESUMEN

OBJECTIVES: The positron emission tomography (PET) could predict the prognosis of DLBCL patients, but the exact procedure on interim PET (iPET) to determine chemoresistant patients remains elusive. METHODS: We retrospectively analyzed 593 newly diagnosed DLBCL patients uniformly treated with R-CHOP regimen. Among them, 352 patients diagnosed from August 2010 to December 2016 were included in the test cohort and 241 patients diagnosed from January 2017 to December 2019 were included in the validation cohort. The iPET was evaluated with Deauville criteria and ΔSUVmax method. The reduction of maximal SUV between baseline and after 4 cycles of chemotherapy were defined as ΔSUVmax. The survival functions were depicted using the Kaplan-Meier method and compared with the log-rank test. RESULTS: Patients with iPET Deauville 4 had heterogeneous outcome and end of treatment complete response rates (eCRR). Combined Deauville with ΔSUVmax method, we proposed a modified-Deauville model: patients with Deauville 4 and ΔSUVmax > 70%, as well as those with Deauville 1-3, were reclassified into the modified-Deauville negative group, while patients with Deauville 4 and ΔSUVmax ≤ 70%, as well as those with Deauville 5, into the modified-Deauville positive group. In the test cohort, 3-year PFS, OS and eCRR of modified-Deauville negative group were 80.2%, 89.9% and 91.8%, significantly higher than those of positive group (12.5%, 27.3% and 29.2%, p ≤ .001). Similar results were found in the validation cohort, that 3-year PFS, OS and eCRR were 87.8%, 95.4%, 96.3% in modified-Deauville negative group, and 27.4%, 32.5%, 13.5% in positive group. Through modified-Deauville model, patients in iPET positive group had very low eCRR and were resistant to conventional chemotherapy. CONCLUSIONS: The modified-Deauville model could better distinguish DLBCL patients with poor response to chemotherapy. Accordingly, these patients could be recognized early and provided with alternative therapeutic agents, which might improve the clinical outcome of refractory DLBCL patients.


Asunto(s)
Linfoma de Células B Grandes Difuso , Tomografía Computarizada por Tomografía de Emisión de Positrones , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Resistencia a Antineoplásicos , Fluorodesoxiglucosa F18 , Humanos , Linfoma de Células B Grandes Difuso/diagnóstico por imagen , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Tomografía de Emisión de Positrones , Pronóstico , Estudios Retrospectivos
8.
Molecules ; 26(18)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34576938

RESUMEN

Glycosylphosphatidylinositol (GPI) anchor modification is a posttranslational modification of proteins that has been conserved in eukaryotes. The biosynthesis and transfer of GPI to proteins are carried out in the endoplasmic reticulum. Attachment of GPI to proteins is mediated by the GPI-transamidase (GPI-TA) complex, which recognizes and cleaves the C-terminal GPI attachment signal of precursor proteins. Then, GPI is transferred to the newly exposed C-terminus of the proteins. GPI-TA consists of five subunits: PIGK, GPAA1, PIGT, PIGS, and PIGU, and the absence of any subunit leads to the loss of activity. Here, we analyzed functionally important residues of the five subunits of GPI-TA by comparing conserved sequences among homologous proteins. In addition, we optimized the purification method for analyzing the structure of GPI-TA. Using purified GPI-TA, preliminary single particle images were obtained. Our results provide guidance for the structural and functional analysis of GPI-TA.


Asunto(s)
Aciltransferasas/química , Aciltransferasas/genética , Aciltransferasas/metabolismo , Aminoácidos/genética , Aciltransferasas/aislamiento & purificación , Microscopía por Crioelectrón , Detergentes/química , Células HEK293 , Humanos , Mutación , Conformación Proteica , Subunidades de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Cell Struct Funct ; 45(1): 77-92, 2020 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-32404555

RESUMEN

Endocytic cargos are transported to recycling endosomes (RE) but how these sorting platforms are generated is not well understood. Here we describe our biochemical and live imaging studies of the conserved MON2-DOPEY complex in RE formation. MON2 mainly co-localized with RE marker RAB4B in peripheral dots and perinuclear region. The peripheral RE approached, interacted with, and separated from sorting nexin 3 (SNX3)-positive early endosomes (EE). Membrane-bound DOPEY2 was recruited to RE dependent upon MON2 expression, and showed binding abilities to kinesin and dynein/dynactin motor proteins. MON2-knockout impaired segregation of RE from EE and led to a decreased tubular recycling endosomal network, whereas RE was accumulated at perinuclear regions in DOPEY2-knockout cells. MON2 depletion also impaired intracellular transferrin receptor recycling, as well as retrograde transport of Wntless during its passage through RE before delivery from EE to the Golgi. Together, these data suggest that the MON2 drives separation of RE from EE and is required for efficient transport of endocytic cargo molecules.Key words: membrane trafficking, MON2, recycling endosomes, Wntless.


Asunto(s)
Endosomas/metabolismo , Aparato de Golgi/metabolismo , Transporte de Proteínas/fisiología , ATPasas de Translocación de Protón/metabolismo , Endocitosis/fisiología , Humanos , Proteínas de Transporte Vesicular/metabolismo , Red trans-Golgi/metabolismo
10.
Yeast ; 37(7-8): 359-371, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32491201

RESUMEN

In the budding yeast Saccharomyces cerevisiae, Svl3 and Pam1 proteins work as functional homologues. Loss of their function causes increased levels of chitin deposition in the cell wall and temperature sensitivity, suggesting their involvement in cell wall formation. We found that the N- and C-termini of these proteins have distinctive and critical functions. They contain an N-terminal part that has a probable 2-dehydropantoate 2-reductase domain. In Svl3, this part can be replaced with the yeast 2-dehydropantoate 2-reductase, Pan5, suggesting that Svl3 and its homologues may be able to mediate 2-dehydropantoate 2-reductase function. On the other hand, Svl3 is recruited to the bud tip and bud neck via multiple localization signals in the C-terminal part. One of such signals is the lysine-rich region located in the C-terminal end. The function and localization of Svl3 are significantly disrupted by the loss of this lysine-rich region; however, its localization is not completely abolished by the mutation because another localization signal enables appropriate transport. Svl3 and Pam1 orthologues are found in cells across fungal species. The Svl3 orthologues of Candida glabrata can complement the loss of Svl3 and Pam1 in S. cerevisiae. C. glabrata cells lacking the SVL3 and PAM1 orthologue genes exhibit phenotypes similar to those observed in svl3∆pam1∆ S. cerevisiae cells. Thus, Svl3 homologues may be generally required for the assembly of the cell wall in fungal cells.


Asunto(s)
Pared Celular/genética , Pared Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Oxidorreductasas de Alcohol , Candida glabrata , Quitina/metabolismo , Genes Fúngicos/genética , Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Bioorg Med Chem Lett ; 30(24): 127614, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33080352

RESUMEN

Congenital disorders of glycosylation (CDG) are a growing group diseases that result from defects in genes involved in glycan biosynthesis pathways. One tetrasaccharide, i.e., Neu5Ac-α2, 6-Gal-ß1, 4-GlcNAc-ß1, 4-GlcNAc, was recently reported as the biomarker of ALG1-CDG, the disease caused by ALG1 deficiency. To develop a novel diagnostic method for ALG1-CDG, chemo-enzymatic synthesis of the tetrasaccharide biomarker linked to phytanyl phosphate and the biomarker's immune stimulation were investigated in this study. The immunization study using liposomes bearing phytanyl-linked tetrasaccharide revealed that they stimulated a moderate immune response. The induced antibody showed strong binding specificity for the ALG1-CDG biomarker, indicating its potential in medical applications.


Asunto(s)
Anticuerpos/inmunología , Formación de Anticuerpos , Trastornos Congénitos de Glicosilación/inmunología , Manosiltransferasas/inmunología , Oligosacáridos/inmunología , Animales , Anticuerpos/análisis , Biomarcadores/química , Trastornos Congénitos de Glicosilación/diagnóstico , Diterpenos/administración & dosificación , Diterpenos/química , Diterpenos/inmunología , Humanos , Inmunización , Manosiltransferasas/análisis , Ratones , Ratones Endogámicos C57BL , Oligosacáridos/administración & dosificación , Oligosacáridos/química
12.
Bioorg Med Chem ; 28(10): 115464, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32249029

RESUMEN

A synthetic platform for the cascade synthesis of rare sugars using Escherichia coli whole cells was established. In the cascade, the donor substrate dihydroxyacetone phosphate (DHAP) was generated from glycerol by glycerol kinase (GK) and glycerol phosphate oxidase (GPO). The acceptor d-glyceraldehyde was directly produced from glycerol by an alditol oxidase. Then, the aldol reaction between DHAP and d-glyceraldehyde was performed by l-rhamnulose-1-phosphate aldolase (RhaD) to generate the corresponding sugar-1-phosphate. Finally, the phosphate group was removed by fructose-1-phosphatase (YqaB) to obtain the rare sugars d-sorbose and d-psicose. To accomplish this goal, the alditol oxidase from Streptomyces coelicolor (AldOS.coe) was expressed in E. coli and the purified AldOS.coe was characterized. Furthermore, a recombinant E. coli strain overexpressing six enzymes including AldOS.coe was constructed. Under the optimized conditions, it produced 7.9 g/L of d-sorbose and d-psicose with a total conversion rate of 17.7% from glycerol. This study provides a useful and cost-effective method for the synthesis of rare sugars.


Asunto(s)
Aldehído-Liasas/metabolismo , Gliceraldehído/metabolismo , Streptomyces coelicolor/enzimología , Gliceraldehído/química , Glicerol/química , Glicerol/metabolismo , Conformación Molecular
13.
J Biol Chem ; 293(15): 5572-5584, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29475941

RESUMEN

Recombinant therapeutic proteins are becoming very important pharmaceutical agents for treating intractable diseases. Most biopharmaceutical proteins are produced in mammalian cells because this ensures correct folding and glycosylation for protein stability and function. However, protein production in mammalian cells has several drawbacks, including heterogeneity of glycans attached to the produced protein. In this study, we established cell lines with high-mannose-type N-linked, low-complexity glycans. We first knocked out two genes encoding Golgi mannosidases (MAN1A1 and MAN1A2) in HEK293 cells. Single knockout (KO) cells did not exhibit changes in N-glycan structures, whereas double KO cells displayed increased high-mannose-type and decreased complex-type glycans. In our effort to eliminate the remaining complex-type glycans, we found that knocking out a gene encoding the endoplasmic reticulum mannosidase I (MAN1B1) in the double KO cells reduced most of the complex-type glycans. In triple KO (MAN1A1, MAN1A2, and MAN1B1) cells, Man9GlcNAc2 and Man8GlcNAc2 were the major N-glycan structures. Therefore, we expressed two lysosomal enzymes, α-galactosidase-A and lysosomal acid lipase, in the triple KO cells and found that the glycans on these enzymes were sensitive to endoglycosidase H treatment. The N-glycan structures on recombinant proteins expressed in triple KO cells were simplified and changed from complex types to high-mannose types at the protein level. Our results indicate that the triple KO HEK293 cells are suitable for producing recombinant proteins, including lysosomal enzymes with high-mannose-type N-glycans.


Asunto(s)
Expresión Génica , Técnicas de Silenciamiento del Gen , Aparato de Golgi/enzimología , Manosidasas , Glicosilación , Aparato de Golgi/genética , Células HEK293 , Humanos , Manosidasas/genética , Manosidasas/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética
14.
FASEB J ; 32(5): 2492-2506, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29273674

RESUMEN

Asparagine ( N)-linked glycosylation requires the ordered, stepwise synthesis of lipid-linked oligosaccharide (LLO) precursor Glc3Man9GlcNAc2-pyrophosphate-dolichol (Glc3Man9Gn2-PDol) on the endoplasmic reticulum. The fourth and fifth steps of LLO synthesis are catalyzed by Alg2, an unusual mannosyltransferase (MTase) with two different MTase activities; Alg2 adds both an α1,3- and α1,6-mannose onto ManGlcNAc2-PDol to form the trimannosyl core Man3GlcNAc2-PDol. The biochemical properties of Alg2 are controversial and remain undefined. In this study, a liquid chromatography/mass spectrometry-based quantitative assay was established and used to analyze the MTase activities of purified yeast Alg2. Alg2-dependent Man3GlcNAc2-PDol production relied on net-neutral lipids with a propensity to form bilayers. We further showed addition of the α1,3- and α1,6-mannose can occur independently in either order but at differing rates. The conserved C-terminal EX7E motif, N-terminal cytosolic tail, and 3 G-rich loop motifs in Alg2 play crucial roles for these activities, both in vitro and in vivo. These findings provide insight into the unique bifunctionality of Alg2 during LLO synthesis and lead to a new model in which alternative, independent routes exist for Alg2 catalysis of the trimannosyl core oligosaccharide.-Li, S.-T., Wang, N., Xu, X.-X., Fujita, M., Nakanishi, H., Kitajima, T., Dean, N., Gao, X.-D. Alternative routes for synthesis of N-linked glycans by Alg2 mannosyltransferase.


Asunto(s)
Polisacáridos Fúngicos/química , Membrana Dobles de Lípidos/química , Manosiltransferasas/química , Modelos Moleculares , Oligosacáridos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Secuencias de Aminoácidos , Polisacáridos Fúngicos/genética , Polisacáridos Fúngicos/metabolismo , Glicosilación , Membrana Dobles de Lípidos/metabolismo , Manosiltransferasas/genética , Manosiltransferasas/metabolismo , Oligosacáridos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad
15.
Microb Cell Fact ; 18(1): 87, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-31109314

RESUMEN

BACKGROUND: Saccharomyces cerevisiae AN120 osw2∆ spores were used as a host with good resistance to unfavorable environment. This work was undertaken to develop a new yeast spore-encapsulation of Candida parapsilosis Glu228Ser/(S)-carbonyl reductase II and Bacillus sp. YX-1 glucose dehydrogenase for efficient chiral synthesis in organic solvents. RESULTS: The spore microencapsulation of E228S/SCR II and GDH in S. cerevisiae AN120 osw2∆ catalyzed (R)-phenylethanol in a good yield with an excellent enantioselectivity (up to 99%) within 4 h. It presented good resistance and catalytic functions under extreme temperature and pH conditions. The encapsulation produced several chiral products with over 70% yield and over 99% enantioselectivity in ethyl acetate after being recycled for 4-6 times. It increased substrate concentration over threefold and reduced the reaction time two to threefolds compared to the recombinant Escherichia coli containing E228S and glucose dehydrogenase. CONCLUSIONS: This work first described sustainable enantioselective synthesis without exogenous cofactors in organic solvents using yeast spore-microencapsulation of coupled alcohol dehydrogenases.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Bacillus/metabolismo , Candida parapsilosis/metabolismo , Composición de Medicamentos/métodos , Glucosa 1-Deshidrogenasa/metabolismo , Saccharomyces cerevisiae/metabolismo , Esporas Fúngicas/metabolismo , Solventes
16.
J Biol Chem ; 292(38): 15880-15891, 2017 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-28794156

RESUMEN

In response to nutrient starvation, diploid cells of the budding yeast Saccharomyces cerevisiae differentiate into a dormant form of haploid cell termed a spore. The dityrosine layer forms the outermost layer of the wall of S. cerevisiae spores and endows them with resistance to environmental stresses. ll-Bisformyl dityrosine is the main constituent of the dityrosine layer, but the mechanism of its assembly remains elusive. Here, we found that ll-bisformyl dityrosine, but not ll-dityrosine, stably associated in vitro with dit1Δ spores, which lack the dityrosine layer. No other soluble cytosolic materials were required for this incorporation. In several aspects, the dityrosine incorporated in trans resembled the dityrosine layer. For example, dityrosine incorporation obscured access of the dye calcofluor white to the underlying chitosan layer, and ll-bisformyl dityrosine molecules bound to dit1Δ spores were partly isomerized to the dl-form. Mutational analyses revealed several spore wall components required for this binding. One was the chitosan layer located immediately below the dityrosine layer in the spore wall. However, ll-bisformyl dityrosine did not stably bind to chitosan particles, indicating that chitosan is not sufficient for this association. Several lines of evidence demonstrated that spore-resident proteins are involved in the incorporation, including the Lds proteins, which are localized to lipid droplets attached to the developing spore wall. In conclusion, our results provide insight into the mechanism of dityrosine layer formation, and the in vitro assay described here may be used to investigate additional mechanisms in spore wall assembly.


Asunto(s)
Saccharomyces cerevisiae/metabolismo , Esporas Fúngicas/metabolismo , Tirosina/análogos & derivados , Quitosano/metabolismo , Citosol/metabolismo , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/metabolismo , Esporas Fúngicas/citología , Tirosina/metabolismo
17.
Glycobiology ; 28(10): 741-753, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29939232

RESUMEN

In eukaryotes, the biosynthesis of a highly conserved dolichol-linked oligosaccharide (DLO) precursor Glc3Man9GlcNAc2-pyrophosphate-dolichol (PP-Dol) begins on the cytoplasmic face of the endoplasmic reticulum (ER) and ends within the lumen. Two functionally distinguished heteromeric glycosyltransferase (GTase) complexes are responsible for the cytosolic DLO assembly. Alg1, a ß-1, 4 mannosyltransferase (MTase) physically interacts with Alg2 and Alg11 proteins to form the multienzyme complex which catalyzes the addition of all five mannose to generate the Man5GlcNAc2-PP-Dol intermediate. Despite the fact that Alg1 plays a central role in the formation of the multi-MTase has been confirmed, the topological information of Alg1 including the molecular mechanism of membrane association are still poorly understood. Using a combination of bioinformatics and biological approaches, we have undertaken a structural and functional study on Alg1 protein, in which the enzymatic activities of Alg1 and its variants were monitored by a complementation assay using the GALpr-ALG1 yeast strain, and further confirmed by a liquid chromatography-mass spectrometry-based in vitro quantitative assay. Computational and experimental evidence confirmed Alg1 shares structure similarity with Alg13/14 complex, which has been defined as a membrane-associated GT-B GTase. Particularly, we provide clear evidence that the N-terminal transmembrane domain including the following positively charged amino acids and an N-terminal amphiphilic-like α helix domain exposed on the protein surface strictly coordinate the Alg1 orientation on the ER membrane. This work provides detailed membrane topology of Alg1 and further reveals its biological importance at the spatial aspect in coordination of cytosolic DLO biosynthesis.


Asunto(s)
Membrana Celular/metabolismo , Dolicoles/biosíntesis , Manosiltransferasas/metabolismo , Oligosacáridos/biosíntesis , Saccharomyces cerevisiae/metabolismo , Membrana Celular/química , Dolicoles/química , Manosiltransferasas/química , Manosiltransferasas/genética , Oligosacáridos/química , Conformación Proteica , Saccharomyces cerevisiae/citología
18.
Yeast ; 35(2): 225-236, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29027702

RESUMEN

In eukaryotes, the glycosylphosphatidylinositol (GPI) modification of many glycoproteins on the cell surface is highly conserved. The lipid moieties of GPI-anchored proteins undergo remodelling processes during their maturation. To date, the products of the PER1, GUP1 and CWH43 genes of the yeast Saccharomyces cerevisiae have been shown to be involved in the lipid remodelling. Here, we focus on the putative GPI remodelling pathway in the methylotrophic yeast Ogataea minuta. We found that the O. minuta homologues of PER1, GUP1 and CWH43 are functionally compatible with those of S. cerevisiae. Disruption of GUP1 or CWH43 in O. minuta caused a growth defect under non-permissive conditions. The O. minuta per1Δ mutant exhibited a more fragile phenotype than the gup1Δ or cwh43Δ mutants. To address the role of GPI modification in O. minuta, we assessed the effect of these mutations on the processing and localization of the O. minuta homologues of the Gas1 protein; in S. cerevisiae, Gas1p is an abundant and well-characterized GPI-anchored protein. We found that O. minuta possesses two copies of the GAS1 gene, which we designate GAS1A and GAS1B. Microscopy and western blotting analysis showed mislocalization and/or lower retention of Gas1Ap and Gas1Bp within the membrane fraction in per1Δ or gup1Δ mutant cells, suggesting the significance of lipid remodelling for GPI-anchored proteins in O. minuta. Localization behaviour of Gas1Bp differed from that of Gas1Ap. Our data reveals, for the first time (to our knowledge), the existence of genes related to GPI anchor remodelling in O. minuta cells.


Asunto(s)
Pared Celular/metabolismo , Proteínas Fúngicas/metabolismo , Levaduras/metabolismo , Secuencia de Aminoácidos , Pared Celular/química , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica
19.
Biosci Biotechnol Biochem ; 82(9): 1497-1507, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29882469

RESUMEN

Glycoengineered yeast cells, which express human-compatible glycan structures, are particularly attractive host cells to produce therapeutic glycoproteins. Disruption of OCH1 gene, which encodes an α-1,6-mannosyltransferase required for mannan-type N-glycan formation, is essential for the elimination of yeast-specific N-glycan structures. However, the gene disruption causes cell wall defects leading to growth defects. Here, we tried to identify factors to rescue the growth defects of och1Δ cells by in vivo mutagenesis using piggyBac (PB)-based transposon. We isolated a mutant strain, named 121, which could grow faster than parental och1Δ cells. The PB element was introduced into the promoter region of BEM4 gene and upregulated the BEM4 expression. Overexpression of BEM4 suppressed growth defects in och1Δ cells. The slow grow phenotypes were partially rescued by expression of Rho1p, whose function is regulated by Bem4p. Our results indicate that BEM4 would be useful to produce therapeutic proteins in glycoengineered yeast without the growth defects.


Asunto(s)
Elementos Transponibles de ADN , Péptidos y Proteínas de Señalización Intracelular/genética , Manosiltransferasas/genética , Glicoproteínas de Membrana/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Genes Bacterianos , Glicosilación , Humanos , Mutagénesis , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al GTP rho/genética
20.
Yeast ; 34(11): 431-446, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28732129

RESUMEN

The yeast spore wall is an excellent model to study the assembly of an extracellular macromolecule structure. In the present study, mutants defective in ß-1,6-glucan synthesis, including kre1∆, kre6∆, kre9∆ and big1∆, were sporulated to analyse the effect of ß-1,6-glucan defects on the spore wall. Except for kre6∆, these mutant spores were sensitive to treatment with ether, suggesting that the mutations perturb the integrity of the spore wall. Morphologically, the mutant spores were indistinguishable from wild-type spores. They lacked significant sporulation defects partly because the chitosan layer, which covers the glucan layer, compensated for the damage. The proof for this model was obtained from the effect of the additional deletion of CHS3 that resulted in the absence of the chitosan layer. Among the double mutants, the most severe spore wall deficiency was observed in big1∆ spores. The majority of the big1∆chs3∆ mutants failed to form visible spores at a higher temperature. Given that the big1∆ mutation caused a failure to attach a GPI-anchored reporter, Cwp2-GFP, to the spore wall, ß-1,6-glucan is involved in tethering of GPI-anchored proteins in the spore wall as well as in the vegetative cell wall. Thus, ß-1,6-glucan is required for proper organization of the spore wall. Copyright © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Pared Celular/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , beta-Glucanos/metabolismo , Pared Celular/metabolismo , Quitina Sintasa/genética , Quitina Sintasa/metabolismo , Quitina Sintasa/fisiología , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicoproteínas/fisiología , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Mutación , Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Esporas Fúngicas/metabolismo , Esporas Fúngicas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA