RESUMEN
Phytochemical analysis of the peeled stems of Syringa pinnatifolia Hemsl. led to the discovery of 13 undescribed lignans, namely helanols A and B (1 and 2) and alashanenols W-G1 (3-13), as well as four known analogues, of which helanols A and B were lignans with novel skeleton of α-ß' linkage. The structures were unambiguously established by extensive spectroscopic analyses, NMR calculations, ECD calculations, and single crystal X-ray crystallography. Five lignans (1, 2, 5, 11 and 13) exhibited a moderate protective effect against H2O2-induced oxidative injuries in H9c2 cells with the protective rates of 11.3-20.6 % at the concentration of 0.3-20 µM, while the positive control quercetin showed protective rates of 58.7 % at 10 µM. Further mechanism investigation suggested that 1 and 2 exerted the protective effect by regulating the expression of Nrf2/HO-1.
Asunto(s)
Peróxido de Hidrógeno , Lignanos , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Syringa , Lignanos/farmacología , Lignanos/química , Lignanos/aislamiento & purificación , Factor 2 Relacionado con NF-E2/metabolismo , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/antagonistas & inhibidores , Estrés Oxidativo/efectos de los fármacos , Syringa/química , Estructura Molecular , Ratas , Relación Estructura-Actividad , Animales , Relación Dosis-Respuesta a Droga , Hemo-Oxigenasa 1/metabolismo , Sustancias Protectoras/farmacología , Sustancias Protectoras/química , Sustancias Protectoras/aislamiento & purificación , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Línea Celular , Supervivencia Celular/efectos de los fármacosRESUMEN
OBJECTIVE: Immune checkpoint inhibitors (ICIs), specifically targeting the programmed cell death protein-1 or its ligand (PD-1/PD-L1), have been extensively used in the treatment of a spectrum of malignancies, although the predictive biomarkers remain to be elucidated. This study aims to investigate the association between baseline circulating levels of cytokines and the creatinine/cystatin C ratio (CCR) with the treatment outcomes of ICIs in patients with advanced cancer. METHODS: The pre-treatment circulating levels of 10 cytokines (PD-L1, CTLA4, CXCL10, LAG3, HGF, CCL2, MIG, GRANB, IL-18, and IL-6) were measured via automated capillary-based immunoassay platform in the serum of 65 advanced cancer patients treated with anti-PD-1/PD-L1-based systemic therapy and 10 healthy volunteers. The levels of cytokines and CCR were quantified and categorized into high and low groups based on the median value. The associations of serum cytokines and CCR with response to treatment, survival, and immune-related adverse events were assessed. RESULTS: Elevated circulating levels of 6 cytokines (PD-L1, CXCL10, HGF, CCL2, MIG, and IL-6) were observed in cancer patients compared with that in healthy volunteers. The correlation coefficients between cytokines, CCR and nutritional risk index were also calculated. In the cancer cohort (N = 65), low circulating HGF (P = 0.023, P = 0.029), low IL-6 (P = 0.002, P < 0.001), and high CCR (P = 0.031, P = 0.008) were associated with significantly improved progression-free survival (PFS) and overall survival (OS). Multi-variable COX analyses adjusted for clinicopathological factors revealed that low HGF, low IL-6, and high CCR were independent favorable prognostic factors for PFS (P = 0.028, P = 0.010, and P = 0.015, respectively) and OS (P = 0.043, P = 0.003, and P = 0.026, respectively). Grade 2 irAEs occurred more frequently in patients with low levels of circulating CCL2 and LAG3. CONCLUSIONS: Pre-treatment circulating levels of serum IL-6, HGF, and CCR may serve as independent predictive and prognostic biomarkers in advanced cancer patients treated with ICIs-based systemic therapy. These findings might help to identify potential patients who would benefit from these therapies.
Asunto(s)
Biomarcadores de Tumor , Creatinina , Citocinas , Inhibidores de Puntos de Control Inmunológico , Neoplasias , Humanos , Masculino , Femenino , Neoplasias/tratamiento farmacológico , Neoplasias/sangre , Persona de Mediana Edad , Anciano , Citocinas/sangre , Pronóstico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Creatinina/sangre , Biomarcadores de Tumor/sangre , Adulto , Anciano de 80 o más Años , Antígeno B7-H1/sangre , Estudios de Casos y ControlesRESUMEN
As a part of systematic research, an ongoing phytochemical investigation of the sesquiterpenoid-containing fraction led to the isolation of five new sesquiterpenoids from the peeled stems of Syringa pinnatifolia, including two pairs of enantiomeric humulane-type (±)-alashanoids A1 and B1 (1 and 2) and one eremophilane-type alashanoid C1 (3). These structures were elucidated by the analysis of extensive spectroscopic data, including ESI-MS and 1D and 2D NMR, and the absolute configuration was determined by comparing its experimental and calculated electronic circular dichroism and calculated NMR. These isolates exhibited moderate inâ vitro cardioprotective effects against oxidative injuries in H9c2 cells.
RESUMEN
Testosterone, an important sex hormone, regulates sexual maturation, testicular development, spermatogenesis and the maintenance of secondary sexual characteristics in males. Testicular Leydig cells are the primary source of testosterone production in the body. Hezuo pigs, native to the southern part of Gansu, China, are characterized by early sexual maturity, strong disease resistance and roughage tolerance. This study employed type IV collagenase digestion combined with cell sieve filtration to isolate and purify Leydig cells from the testicular tissue of 1-month-old Hezuo pigs. We also preliminarily investigated the functions of these cells. The results indicated that the purity of the isolated and purified Leydig cells was as high as 95%. Immunofluorescence analysis demonstrated that the isolated cells specifically expressed the 3ß-hydroxysteroid dehydrogenase antibody. Enzyme-linked immunosorbent assay results showed that the testosterone secretion of the Leydig cells cultured in vitro (generations 5-9) ranged between 1.29-1.67 ng/mL. Additionally, the content of the cellular autophagy signature protein microtubule-associated protein 1 light chain 3 was measured at 230-280 pg/mL. Through this study, we established an in vitro system for the isolation, purification and characterization of testicular Leydig cells from 1-month-old Hezuo pigs, providing a reference for exploring the molecular mechanism behind precocious puberty in Hezuo pigs.
Asunto(s)
Células Intersticiales del Testículo , Testosterona , Animales , Masculino , Células Intersticiales del Testículo/metabolismo , Testosterona/metabolismo , Porcinos , Testículo/citología , Células Cultivadas , Técnicas de Cultivo de Célula/veterinaria , Separación Celular/métodos , Separación Celular/veterinariaRESUMEN
Inflammatory diseases of the intestinal tract in piglets severely impair the economic performance of pig farms. Pig milk exosomes can encapsulate miRNAs which can then enter the piglet intestine to play an immunomodulatory role. Previously, we comparatively analyzed and identified exosomal miRNAs in the colostrum and mature milk of Bamei and Landrace pigs, and we screened for ssc-miR-22-3p, which is associated with inflammation and immune response; however, the role played by ssc-miR-22-3p in the immune response in IPEC-J2 cells is not yet clear. In this study, we first constructed a pig intestinal inflammatory response model using Lipopolysaccharide (LPS) and Polyinosinic-polycytidylic acid (Poly (I:C)), and we investigated the role of ssc-miR-22-3p targeting MAPK14 in the regulation of LPS and Poly (I:C)-induced inflammatory injury in IPEC-J2 cells by RT-qPCR, cell counting kit-8 (CCK-8), EdU staining, lactate dehydrogenase (LDH) activity assay, and dual luciferase reporter gene assay. We successfully established LPS and Poly (I:C)-induced cell damage models in IPEC-J2 cells. The immune response of IPEC-J2 cells was stimulated by induction of IPEC-J2 cells at 10 µg/mL LPS and 20 µg/mL Poly (I:C) for 24 h. Overexpression of ssc-miR-22-3p decreased cytokine expression and promoted cell viability and proliferation. The functional enrichment analysis revealed that ssc-miR-22-3p targets genes enriched in the pathways of negative regulation of inflammatory response and bacterial invasion of epithelial cells. The validity of the binding site of ssc-miR-22-3p to MAPK14 was tested by a dual luciferase reporter gene. Pig milk exosome ssc-miR-22-3p promotes cell viability and proliferation by targeting MAPK14, and it alleviates LPS and Poly (I:C)-induced inflammatory responses in IPEC-J2 cells.
Asunto(s)
Células Epiteliales , Exosomas , Inflamación , Lipopolisacáridos , MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Exosomas/metabolismo , Porcinos , Células Epiteliales/metabolismo , Inflamación/metabolismo , Inflamación/genética , Inflamación/patología , Leche/metabolismo , Línea Celular , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Poli I-C/farmacologíaRESUMEN
Breast milk, an indispensable source of immunological and nutrient components, is essential for the growth and development of newborn mammals. MicroRNAs (miRNAs) are present in various tissues and body fluids and are selectively packaged inside exosomes, a type of membrane vesicle. Milk exosomes have potential regulatory effects on the growth, development, and immunity of newborn piglets. To explore the differences in milk exosomes related to the breed and milk type, we isolated exosomes from colostrum and mature milk from domestic Bamei pigs and foreign Landrace pigs by using density gradient centrifugation and then characterized them by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Furthermore, the profiles and functions of miRNAs in the two types of pig milk exosomes were investigated using miRNA-seq and bioinformatics analysis. We identified a total of 1081 known and 2311 novel miRNAs in pig milk exosomes from Bamei and Landrace pigs. These differentially expressed miRNAs (DE-miRNAs) are closely associated with processes such as cell signaling, cell physiology, and immune system development. Functional enrichment analysis showed that DE-miRNA target genes were significantly enriched in endocytosis, the T cell receptor signaling pathway, and the Th17 cell differentiation signaling pathway. The exosomal miRNAs in both the colostrum and mature milk of the two pig species showed significant differences. Based on related signaling pathways, we found that the colostrum of local pig breeds contained more immune-system-development-related miRNAs. This study provides new insights into the possible function of milk exosomal miRNAs in the development of the piglet immune system.
Asunto(s)
Líquidos Corporales , Exosomas , MicroARNs , Humanos , Femenino , Embarazo , Animales , Porcinos , Calostro , Exosomas/genética , MicroARNs/genética , Leche Humana , Sus scrofaRESUMEN
OBJECTIVE: Neonatal hypoglycemia (NH) is the most frequent complication in neonates born to pregnant people with gestational diabetes mellitus (GDM) and an important cause of brain damage and death of neonates. We explored the risk factors for NH in neonates of pregnant people with GDM. METHODS: A prospective cohort study was conducted involving 322 pregnant people with GDM at the Guangzhou Women and Children's Medical Centre. Maternal sociodemographic, clinical, and biochemical data, as well as general characteristics of neonates, were collected to analyze their associations with NH in neonates of pregnant people with GDM. RESULTS: The incidence of NH among neonates of pregnant people with GDM was 19.57% (63/322). After adjustment for confounders, the factors significantly associated with an increased risk of NH were cesarean delivery (relative risk [RR] = 3.44; 95% confidence interval [CI], 1.83-6.45), red blood cell (RBC) count (RR = 2.19; 95% CI, 1.22-3.96), and 1-hour postprandial glucose (RR = 2.35; 95% CI, 1.23-4.46) during pregnancy, whereas later gestational age (RR = 0.58; 95% CI, 0.42-0.80) and multiparity (RR = 0.32; 95% CI, 0.16-0.66) were associated with a reduced risk of NH. CONCLUSION: Cesarean delivery, maternal 1-hour glucose of the oral glucose tolerance test, and increased RBC count of pregnant people with GDM are independent risk factors for NH, while later gestational age and multiparity are protective factors.
Asunto(s)
Diabetes Gestacional , Hipoglucemia , Embarazo , Recién Nacido , Niño , Femenino , Humanos , Diabetes Gestacional/epidemiología , Estudios Prospectivos , Hipoglucemia/epidemiología , Hipoglucemia/etiología , Glucosa , Factores de RiesgoRESUMEN
BACKGROUND: Hull colour is an important morphological marker for selection in seed production of foxtail millet. However, the molecular mechanisms underlying hull colour variation remain unknown. RESULTS: An F7 recombinant inbred line (RIL) population containing 215 lines derived from Hongjiugu × Yugu18 was used to analyze inheritance and detect the quantitative trait loci (QTL) for four hull colour traits using major gene plus polygene mixed inheritance analysis and composite interval mapping (CIM) in four environments. Genetic analysis revealed that the hull colour L* value (HCL*) was controlled by two major genes plus additive polygenes, the hull colour a* value (HCa*) was controlled by three major genes, the hull colour b* value (HCb*) was controlled by two major genes plus polygenes, and the hull colour C* value (HCC*) was controlled by four major genes. A high-density genetic linkage map covering 1227.383 cM of the foxtail millet genome, with an average interval of 0.879 cM between adjacent bin markers, was constructed using 1420 bin markers. Based on the genetic linkage map and the phenotypic data, a total of 39 QTL were detected for these four hull colour traits across four environments, each explaining 1.50%-49.20% of the phenotypic variation. Of these, six environmentally stable major QTL were co-localized to regions on chromosomes 1 and 9, playing a major role in hull colour. There were 556 annotated genes within the two QTL regions. Based on the functions of homologous genes in Arabidopsis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) gene annotations, five genes were predicted as candidate genes for further studies. CONCLUSIONS: This is the first study to use an inheritance model and QTL mapping to determine the genetic mechanisms of hull colour trait in foxtail millet. We identified six major environmentally stable QTL and predicted five potential candidate genes to be associated with hull colour. These results advance the current understanding of the genetic mechanisms underlying hull colour traits in foxtail millet and provide additional resources for application in genomics-assisted breeding and potential isolation and functional characterization of the candidate genes.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Setaria (Planta) , Sitios de Carácter Cuantitativo , Mapeo Cromosómico/métodos , Setaria (Planta)/genética , Carcinoma Hepatocelular/genética , Color , Neoplasias Hepáticas/genética , Fitomejoramiento , Estudios de Asociación GenéticaRESUMEN
LncRNAs play important roles in resisting bacterial infection via host immune and inflammation responses. Clostridium perfringens (C. perfringens) type C is one of the main bacteria causing piglet diarrhea diseases, leading to major economic losses in the pig industry worldwide. In our previous studies, piglets resistant (SR) and susceptible (SS) to C. perfringens type C were identified based on differences in host immune capacity and total diarrhea scores. In this paper, the RNA-Seq data of the spleen were comprehensively reanalyzed to investigate antagonistic lncRNAs. Thus, 14 lncRNAs and 89 mRNAs were differentially expressed (DE) between the SR and SS groups compared to the control (SC) group. GO term enrichment, KEGG pathway enrichment and lncRNA-mRNA interactions were analyzed to identify four key lncRNA targeted genes via MAPK and NF-κB pathways to regulate cytokine genes (such as TNF-α and IL-6) against C. perfringens type C infection. The RT-qPCR results for six selected DE lncRNAs and mRNAs are consistent with the RNA-Seq data. This study analyzed the expression profiling of lncRNAs in the spleen of antagonistic and sensitive piglets and found four key lncRNAs against C. perfringens type C infection. The identification of antagonistic lncRNAs can facilitate investigations into the molecular mechanisms underlying resistance to diarrhea in piglets.
RESUMEN
Clostridium perfringens (C. perfringens) type C is one of the common bacteria in piglet diarrhea, which seriously affects the swine industry's development. The spleen plays crucial roles in the resistance and elimination of pathogenic microorganisms, and miRNAs play important roles in regulating piglet diarrhea caused by pathogens. However, the mechanism by which miRNAs in the spleen are involved in regulating C. perfringens type C causing diarrhea in piglets remains unclear. The expression profiles of the spleen miRNAs of 7-day-old piglets challenged by C. perfringens type C were studied using small RNA-sequencing in control (SC), susceptible (SS), and resistant (SR) groups. Eight-eight differentially expressed miRNAs were screened. The KEGG pathway analysis of target genes revealed that the miRNAs were involved in the MAPK, p53, and ECM-receptor interaction signaling pathways. NFATC4 was determined to be a direct target of miR-532-3p and miR-133b using a dual-luciferase reporter assay. Thus, miR-133b and miR-532-3p targeted to NFATC4 were likely involved to piglet resistance to C. perfringens type C. This paper provides the valuable resources to deeply understand the genetic basis of C. perfringens type C resistance in piglets and a solid foundation to identify novel markers of C. perfringens type C resistance.
RESUMEN
This study aims to examine the impacts of Scutellaria strigillosa Hemsl. (SSH) on the proliferation, apoptosis of human hepatoma cell HepG2 and screen the bioactive components. We found that SSH extract inhibited HepG2 proliferation, arrested cell division prior to S phase. Additionally, SSH extract exposure induced apoptosis, and increased the proportions of late apoptotic cells. Specifically, we focus on the inhibitory effect of SSH extract on aspartate ß-hydroxylase, a key therapeutic target of hepatocellular carcinoma closely related with the proliferation and apoptosis of HepG2. We found SSH extract with notable inhibitory activity against aspartate ß-hydroxylase, elucidated the main bioactive constituents by HPLC-Q-TOF/MS and Molecular docking analysis. In conclusion, these results provided the antiproliferative and proapoptotic effects of SSH on HepG2 cell, elucidated the main bioactive constituents based on aspartate ß-hydroxylase inhibition. These data revealed the potential value of SSH and its bioactive components for the prevention and treatment of liver cancer for the first time.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Scutellaria , Humanos , Células Hep G2 , Ácido Aspártico , Scutellaria/química , Simulación del Acoplamiento Molecular , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Proliferación Celular , Apoptosis , Oxigenasas de Función Mixta , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéuticoRESUMEN
Clostridium perfringens (C. perfringens) beta2 (CPB2) toxin may induce necrotizing enteritis (NE) in pigs. Sirtuin1 (SIRT1) is involved in inflammatory intestinal diseases and affects intestinal barrier function. However, the effects of SIRT1 on piglet intestinal disease caused by CPB2 toxin are unclear. This study revealed the role of pig SIRT1 in CPB2 toxin-exposed intestinal porcine epithelial cells (IPEC-J2). Herein, we manifested that SIRT1 was dramatically decreased in IPEC-J2 cells infected with CPB2 toxin. Subsequently, we silenced and overexpressed SIRT1 using siRNA and a overexpression vector in CPB2 toxin-treated IPEC-J2 cells. The results indicated that overexpression of SIRT1 suppressed reactive oxygen species (ROS) generates, the expression tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and Bax, nuclear factor-kappa B (NF-κB p65), phospho (p)-NF-kB p65 and lactate dehydrogenase (LDH) activity and apoptosis in CPB2 toxin-treated IPEC-J2 cells, and increased IL-10, mitochondrial membrane potential (ΔΨm), Bcl-2, Claudin1 and Occludin levels and cell viability. These results indicated that SIRT1 protects IPEC-J2 cells against CPB2 toxin-induced oxidative damage and tight junction (TJ) disruption, which provides a theoretical basis for further study of the molecular regulatory mechanism of SIRT1 in C. perfringens-infected NE in piglets.
Asunto(s)
Sirtuina 1 , Toxinas Biológicas , Animales , Células Epiteliales , Intestinos , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , PorcinosRESUMEN
There has been a growing global interest in the potential health benefits of edible natural bioactive products in recent years. Ganoderma lucidum, a medicinal mushroom, has gained attention for its decadent array of therapeutic and pharmaceutical compounds. Notably, G. lucidum exhibits significant anti-cancer effects against various cancer types. Polysaccharides, a prominent component in G. lucidum, are pivotal in conferring its diverse biological and medicinal properties. The primary focus of this study was to investigate the anti-cancer activities of G. lucidum polysaccharides (GLPs), with particular attention to their potential to mitigate chemotherapy-associated toxicity and enhance targeted drug delivery. Our findings reveal that GLPs exhibit anti-cancer effects through diverse mechanisms, including cytotoxicity, antioxidative properties, apoptosis induction, reactive oxygen species (ROS) generation, and anti-proliferative effects. Furthermore, the potential of GLPs-based nanoparticles (NPs) as delivery vehicles for bioactive constituents was explored. These GLPs-based NPs are designed to target various cancer tissues, enhancing the biological activity of encapsulated compounds. As such, GLPs derived from G. lucidum represent a promising avenue for inhibiting cancer progression, minimizing chemotherapy-related side effects, and supporting their utilization in combination therapies as natural adjuncts.
RESUMEN
Natural Killer (NK) cell is the first batch of re-constructed cell populations after allogeneic hematopoietic stem cell transplantation (allo-HSCT), and its delayed reconstitution inevitably causes poor outcome. The traditional Chinese medicine Huiyang-Guben decoction (HYGB) has been clinically used in patients undergoing allo-HSCT, but its effect on NK cell reconstruction is still unclear. 40 patients with allo-HSCT therapy were randomly divided into the control group and the HYGB group, and were given oral administration of normal saline or HYGB for 4 weeks before allo-HSCT, respectively. NK cells were cultured and treated with transforming growth factor ß (TGF-ß) and HYGB in vitro, and cell viability, cell apoptosis, and the function of NK cells were evaluated. Functional verification experiments were performed by knocking down signal transduction molecule 7 (Smad7) in NK cells before TGF-ß and HYGB treatment. Clinical data suggested that HYGB intervention decreased the incidence of acute graft-versus-host disease after allo-HSCT, and increased the proportion of NK cell population. Meanwhile, HYGB improved cell viability, restrained apoptotic cell death, and enhanced cell killing activity of NK cells in patients with allo-HSCT. Notably, we found that HYGB significantly increased the expression level of Smad7 and the phosphorylation level of signal transducer and activator of transcription 3 (Stat3) in NK cells from patients with allo-HSCT. Moreover, HYGB alleviated TGF-ß-induced NK cell impairment and re-activated the Smad7/Stat3 signaling in vitro, while silencing Smad7 reversed the protective effect of HYGB on TGF-ß-treated NK cells. HYGB promotes NK cell reconstruction and improves NK cell function after allo-HSCT through activating the Smad7/Stat3 signaling pathway.
RESUMEN
BACKGROUND: Dihydropyrimidinase like 4 (DPYSL4), expressed little in normal tissues, was reported as one of the gene family members to predict prognosis in melanoma; however, there are no reports about the link between DPYSL4 expression in gastric cancer and the tumor immune microenvironment. METHODS: In our research, we first evaluated the differential expression level of DPYSL4 between gastric cancer tissues and paracancerous tissues, as well as the prognostic value of DPYSL4 expression in gastric cancer through the databases, such as Timer, UALCAN, Kaplan-Meier plotter database, accompanied with the validation of clinical specimens by immunohistochemistry. Then, we also looked for the functional pathway of DPYSL4 by analyzing the GO and KEGG enrichment analysis based on DPYSL4 co-expression genes. Last but not least, the Timer database was also applied to analyze the correlation between DPYSL4 expression and immune cells, as well as signature molecules, in order to provide a theoretical basis for assessing the relationship between DPYSL4 expression and immune infiltration in gastric cancer. RESULTS: The results of databases and immunohistochemistry showed that the expression level of DPYSL4 in gastric cancer was higher than that in adjacent tissues, and DPYSL4 overexpression was associated with poor prognosis of gastric cancer patients. The analysis of Go and KEGG revealed that DPYSL4 expression was enriched in pathways involved in "immune responses". Furthermore, by the application of an immunoinfiltration database, DPYSL4 overexpression was strongly related to immune cell infiltration and their corresponding star molecules in gastric cancer. CONCLUSIONS: Our study implied that DPYSL4 may be regarded as a prognostic indicator in gastric cancer and is associated with immune infiltration.
Asunto(s)
Melanoma , Neoplasias Gástricas , Humanos , Pronóstico , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Expresión Génica , Microambiente TumoralRESUMEN
The purpose of this study was to examine STC-1's structure, function, and differential expression in large and miniature pigs. We cloned the Hezuo pig's coding sequence, compared its homology, and used bioinformatics to assess the structure. RT-qPCR and Western blot were used to detect the expression in ten tissues of Hezuo pig and Landrace pig. The results showed that Hezuo pig was most closely related to Capra hircus and most distantly related to Danio rerio. The protein STC-1 has a signal peptide and its secondary structure is dominated by the alpha helix. The mRNA expression in the spleen, duodenum, jejunum, and stomach of Hezuo pigs was higher than that of Landrace pigs. And except for heart and duodenum, expression of the protein in Hezuo pig was higher than in another. In conclusion, STC-1 is highly conserved among different breeds of pigs, and the expression and distribution of its mRNA and protein are different in large and miniature pigs. This work can lay the foundation for future study into the mechanism of action of STC-1 in Hezuo pigs and the enhancement of breeding in miniature pigs.
Asunto(s)
Clonación de Organismos , Porcinos/genética , Animales , Porcinos Enanos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Clonación MolecularRESUMEN
The heartwood of Syringa oblata Lindl. (SO) is one of Mongolian folk medicines to treat insomnia and pain, while its pharmacological evaluation and underlying mechanism remain unclear. In this study, the sedative effect of ethanol extract of SO (ESO) was evaluated with the locomotor activity test and the threshold dose of pentobarbital sodium-induced sleep test in mice, and the hot plate test, acetic acid-induced writhing test, and formalin test in mice were used to evaluate its analgesic effect. The underlying mechanism of ESO analgesia was explored by RT-PCR and western blot analysis, which is associated with the regulation of the NF-κB signaling pathway. Besides, the main constituents of ESO were characterized by LC/MS data analysis and comparison with isolated pure compounds. The current findings brought evidence for clinical application and further pharmacological and phytochemical studies on SO.
Asunto(s)
Lignanos , Syringa , Ratones , Animales , Etanol , Hipnóticos y Sedantes/efectos adversos , Syringa/química , Lignanos/farmacología , Medicina Tradicional Mongoliana , Analgésicos/farmacología , Analgésicos/uso terapéutico , Dolor/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéuticoRESUMEN
PURPOSE: A novel formulation for Ulcerative Colitis (UC) treatment by rectal administration with budesonide liposomes (Bud Lip) and thermosensitive gel (Gel) was developed for future clinical use. To evaluate the anti-inflammatory activity and colon mucosal protection of this novel formulation compared with the other three in mice. METHODS: Bud Lip was prepared by reverse evaporation method and then dispersed in solutions with PL407 and PL188 by a cold method. Male mice were induced to UC by dextran sulfate sodium (DSS) and were treated for 14 days by rectal administration, as follows: Bud enema (a conventional suspension formulation); Bud Lip; Bud Gel; Bud Lip-Gel; saline. And a negative control without colitis was also used. Disease activity index (DAI), and macroscopic and microscopic damage scores in colon tissues were used to evaluate the effect of therapy. The levels of IL-6 and IL-10 in serum and the concentrations of TNF-α and IL-10 and myeloperoxidase (MPO) activity in colon tissue were also introduced. RESULTS: In UC mice model, Bud Lip-Gel showed inflammation was alleviated significantly, and the treatment was highly associated with lower DAI, less macroscopic and microscopic colonic damage and downregulation of pro-inflammatory cytokines TNF-α, IL-6 and MPO. Bud Lip-Gel had advantages over Bud, Bud Lip, Bud Gel in the treatment of active UC. CONCLUSION: Novel Bud liposomes complex in thermosensitive Gel effectively mitigated symptoms, alleviated macroscopic and microscopic colon damage, and reduced inflammatory reaction in UC mice, which might be a potential strategy for UC treatment.
Asunto(s)
Colitis Ulcerosa , Masculino , Animales , Ratones , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Interleucina-10/efectos adversos , Liposomas , Factor de Necrosis Tumoral alfa , Budesonida/farmacología , Interleucina-6/efectos adversos , Inflamación/tratamiento farmacológicoRESUMEN
Long non-coding RNAs (lncRNAs) modified by n6-methyladenosine (m6A) have been implicated in the development and progression of several diseases. However, the mechanism responsible for the role of m6A-modified lncRNAs in Clostridium perfringens type C piglet diarrhea has remained largely unknown. We previously developed an in vitro model of CPB2 toxin-induced piglet diarrhea in IPEC-J2 cells. In addition, we previously performed RNA immunoprecipitation sequencing (MeRIP-seq), which demonstrated lncRNA EN_42575 as one of the most regulated m6A-modified lncRNAs in CPB2 toxin-exposed IPEC-J2 cells. In this study, we used MeRIP-qPCR, FISH, EdU, and RNA pull-down assays to determine the function of lncRNA EN_42575 in CPB2 toxin-exposed IPEC-J2 cells. LncRNA EN_42575 was significantly downregulated at different time points in CPB2 toxin-treated cells. Functionally, lncRNA EN_42575 overexpression reduced cytotoxicity, promoted cell proliferation, and inhibited apoptosis and oxidative damage, whereas the knockdown of lncRNA EN_42575 reversed these results. Furthermore, the dual-luciferase analysis revealed that METTL3 regulated lncRNA EN_42575 expression in an m6A-dependent manner. In conclusion, METTL3-mediated lncRNA EN_42575 exerted a regulatory effect on IPEC-J2 cells exposed to CPB2 toxins. These findings offer novel perspectives to further investigate the function of m6A-modified lncRNAs in piglet diarrhea.
Asunto(s)
ARN Largo no Codificante , Toxinas Biológicas , Animales , Porcinos , ARN Largo no Codificante/genética , Apoptosis/genética , Proliferación Celular , Adenosina , Diarrea , Metiltransferasas/genéticaRESUMEN
Kisspeptin, a neuropeptide encoded by the Kiss1 gene, combines with its receptor Kiss1R to regulate the onset of puberty and male fertility by the hypothalamic-pituitary-gonadal axis. However, little is known regarding the expression signatures and molecular functions of Kiss1 in the testis. H&E staining revealed that well-arranged spermatogonia, spermatocytes, round and elongated spermatids, and spermatozoa, were observed in 4-, 6-, and 8-month-old testes compared to 1- and 3-month-old testes of Hezuo pigs; however, these were not observed in Landrance until 6 months. The diameter, perimeter, and cross-sectional area of seminiferous tubules and the perimeter and area of the tubular lumen increased gradually with age in both pigs. Still, Hezuo pigs grew faster than Landrance. The cloning results suggested that the Hezuo pigs' Kiss1 CDS region is 417 bp in length, encodes 138 amino acids, and is highly conserved in the kisspeptin-10 region. qRT-PCR and Western blot indicated that the expression trends of Kiss1 mRNA and protein were essentially identical, with higher expression levels at post-pubertal stages. Immunohistochemistry demonstrated that the Kiss1 protein was mainly located in Leydig cells and post-pubertal spermatogenic cells, ranging from round spermatids to spermatozoa. These studies suggest that Kiss1 is an essential regulator in the onset of puberty and spermatogenesis of boars.