Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 28(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37764232

RESUMEN

The Nb3Al superconductor with excellent physical and working properties is one of the most promising materials in high-magnetic-field applications. However, it is difficult to prepare high-quality Nb3Al with a desired superconducting transition temperature (Tc) because of its narrow phase formation area at high temperatures (>1940 °C). This work reports a method to prepare stoichiometric Nb3Al powder samples at a relatively low temperature (1400 °C) by exploiting the nano effect of Nb particles with pretreatment of Nb powder under H2/Ar atmosphere. The obtained Nb3Al samples exhibit high Tc's of ~16.8K. Based on density functional theory (DFT) calculations and statistical mechanics analysis, the crucial role of quantum effect in leading to the success of the preparation method was studied. A new measure of surface energy (MSE) of a model particle is introduced to study its size and face dependence. A rapid convergence of the MSE with respect to the size indicates a quick approach to the solid limit, while the face dependence of MSE reveals a liquid-like behavior. The surface effect and quantum fluctuation of the Nbn clusters explain the success of the preparation method.

2.
Nano Lett ; 21(12): 4903-4910, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34100617

RESUMEN

Persistent luminescence nanoparticles (PLNPs) are an emerging photonic nanomaterial that possesses uniquely persistent luminescence properties after excitation ceases. They can be repeatedly recharged in vitro and in vivo and hold great promise for numerous areas and applications. Unfortunately, none of the existing synthesis methods can control their composition to grow core-shell structured PLNPs with desirable shapes and enhanced functionalities. Here, we report on straightforward thermolysis-mediated colloidal synthesis of CaF2:Dy@NaYF4 core-shell PLNPs that can enhance persistent luminescence under both light and X-ray excitations. Benefitting from the well-matched crystal lattices between CaF2 and NaYF4, this colloidal synthesis makes it possible to prepare core-shell PLNPs with exquisite control of the compositions, shapes, and enhanced luminescence. This demonstration of the developing colloidal core-shell PLNPs overcomes the current key bottleneck regarding the synthesis of heterostructured PLNPs and sets the stage for fully exploiting the potential of these fascinating luminous materials.


Asunto(s)
Nanopartículas , Nanoestructuras , Luminiscencia
3.
Am J Physiol Lung Cell Mol Physiol ; 318(1): L89-L97, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31617735

RESUMEN

Liquiritin apioside (LA), a main flavonoid component of licorice, reportedly suppresses cough responses to inhalation of aerosolized capsaicin [CAP; a stimulant to transient receptor potential vanilloid 1 (TRPV1)] in conscious guinea pigs via acting on peripheral nerves. However, the evidence of LA having a direct effect on airway sensory fibers is lacking. Considering the important role laryngeal chemoreceptors and mechanoreceptors play in triggering apnea and cough, we studied whether LA suppressed the apneic responses to stimulation of these receptors via directly acting on the superior laryngeal nerve (SLN). Intralaryngeal delivery of chemical [CAP, HCl, and distilled water (DW)] and mechanical [an air-pulse (AP)] stimulations was applied in anesthetized rat pups to evoke the apnea. These stimuli were repeated after intralaryngeal LA treatment or peri-SLN LA treatment to determine the direct effect of LA on the SLN. Our results showed that all stimuli triggered an immediate apnea. Intralaryngeal LA treatment significantly attenuated the apneic response to chemical but not mechanical stimulations. The same attenuation was observed after peri-SLN LA treatment. Owing that TRPV1 receptors of laryngeal C fibers are responsible for the CAP-triggered apneas, the LA impact on the activity of laryngeal C neurons retrogradely traced by DiI was subsequently studied using a patch-clamp approach. LA pretreatment significantly altered the electrophysiological kinetics of CAP-induced currents in laryngeal C neurons by reducing their amplitudes, increasing the rise times, and prolonging the decay times. In conclusion, our results, for the first time, reveal that LA suppresses the laryngeal chemoreceptor-mediated apnea by directly acting on the SLN (TRPV1 receptors of laryngeal C fibers).


Asunto(s)
Flavanonas/farmacología , Glucósidos/farmacología , Laringe/efectos de los fármacos , Reflejo/efectos de los fármacos , Animales , Apnea/tratamiento farmacológico , Apnea/metabolismo , Tos/tratamiento farmacológico , Tos/metabolismo , Femenino , Nervios Laríngeos/efectos de los fármacos , Nervios Laríngeos/metabolismo , Laringe/metabolismo , Masculino , Fibras Nerviosas Amielínicas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Embarazo , Ratas , Ratas Sprague-Dawley , Canales Catiónicos TRPV/metabolismo
4.
FASEB J ; 33(10): 10731-10741, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31251077

RESUMEN

Prenatal nicotinic exposure (PNE) reportedly sensitizes bronchopulmonary C-fibers (PCFs) and prolongs PCF-mediated apnea in rat pups, contributing to the pathogenesis of sudden infant death syndrome. Serotonin, or 5-hydroxytryptamine (5-HT), induces apnea via acting on 5-HT receptor 3 (5-HT3R) in PCFs, and among the 5-HT3R subunits, 5-HT3B is responsible for shortening the decay time of 5-HT3R-mediated currents. We examined whether PNE would promote pulmonary 5-HT secretion and prolong the apnea mediated by 5-HT3Rs in PCFs via affecting the 5-HT3B subunit. To this end, the following variables were compared between the control and PNE rat pups: 1) the 5-HT content in bronchoalveolar lavage fluid, 2) the apneic response to the right atrial bolus injection of phenylbiguanide (a 5-HT3R agonist) before and after PCF inactivation, 3) 5-HT3R currents and the stimulus threshold of the action currents of vagal pulmonary C-neurons, and 4) the immunoreactivity (IR) and mRNA expression of 5-HT3A and 5-HT3B in these neurons. Our results showed that PNE up-regulated the pulmonary 5-HT concentration and strengthened the PCF 5-HT3R-mediated apnea. PNE significantly facilitated neural excitability by shortening the decay time of 5-HT3R currents, lowering the stimulus threshold, and increasing 5-HT3B IR. In summary, PNE prolongs the apnea mediated by 5-HT3Rs in PCFs, likely by increasing 5-HT3B subunits to enhance the excitability of 5-HT3 channels.-Zhao, L., Gao, X., Zhuang, J., Wallen, M., Leng, S., Xu, F. Prolongation of bronchopulmonary C-fiber-mediated apnea by prenatal nicotinic exposure in rat pups: role of 5-HT3 receptors.


Asunto(s)
Apnea/etiología , Apnea/fisiopatología , Pulmón/efectos de los fármacos , Pulmón/inervación , Fibras Nerviosas Amielínicas/efectos de los fármacos , Fibras Nerviosas Amielínicas/fisiología , Nicotina/toxicidad , Efectos Tardíos de la Exposición Prenatal/etiología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Receptores de Serotonina 5-HT3/fisiología , Animales , Animales Recién Nacidos , Apnea/genética , Biguanidas/administración & dosificación , Líquido del Lavado Bronquioalveolar/química , Modelos Animales de Enfermedad , Femenino , Humanos , Recién Nacido , Pulmón/fisiopatología , Masculino , Nicotina/administración & dosificación , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Serotonina 5-HT3/genética , Serotonina/metabolismo , Agonistas del Receptor de Serotonina 5-HT3/administración & dosificación , Muerte Súbita del Lactante/etiología
5.
FASEB J ; 31(10): 4325-4334, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28615326

RESUMEN

Maternal cigarette smoke, including prenatal nicotinic exposure (PNE), is responsible for sudden infant death syndrome (SIDS). The fatal events of SIDS are characterized by severe bradycardia and life-threatening apneas. Although activation of transient receptor potential vanilloid 1 (TRPV1) of superior laryngeal C fibers (SLCFs) could induce bradycardia and apnea and has been implicated in SIDS pathogenesis, how PNE affects the SLCF-mediated cardiorespiratory responses remains unexplored. Here, we tested the hypothesis that PNE would aggravate the SLCF-mediated apnea and bradycardia via up-regulating TRPV1 expression and excitation of laryngeal C neurons in the nodose/jugular (N/J) ganglia. To this end, we compared the following outcomes between control and PNE rat pups at postnatal days 11-14: 1) the cardiorespiratory responses to intralaryngeal application of capsaicin (10 µg/ml, 50 µl), a selective stimulant for TRPV1 receptors, in anesthetized preparation; 2) immunoreactivity and mRNA of TRPV1 receptors of laryngeal sensory C neurons in the N/J ganglia retrogradely traced by 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate; and 3) TRPV1 currents and electrophysiological characteristics of these neurons by using whole-cell patch-clamp technique in vitro Our results showed that PNE markedly prolonged the apneic response and exacerbated the bradycardic response to intralaryngeal perfusion of capsaicin, which was associated with up-regulation of TRPV1 expression in laryngeal C neurons. In addition, PNE increased the TRPV1 currents, depressed the slow delayed rectifier potassium currents, and increased the resting membrane potential of these neurons. Our results suggest that PNE is capable of aggravating the SLCF-mediated apnea and bradycardia through TRPV1 sensitization and neuronal excitation, which may contribute to the pathogenesis of SIDS.-Gao, X., Zhao, L., Zhuang, J., Zang, N., Xu, F. Prenatal nicotinic exposure prolongs superior laryngeal C-fiber-mediated apnea and bradycardia through enhancing neuronal TRPV1 expression and excitation.


Asunto(s)
Apnea/metabolismo , Bradicardia/metabolismo , Fibras Nerviosas Amielínicas/metabolismo , Nicotina/farmacología , Células Receptoras Sensoriales/metabolismo , Humo/efectos adversos , Canales Catiónicos TRPV/metabolismo , Animales , Animales Recién Nacidos , Apnea/inducido químicamente , Bradicardia/inducido químicamente , Capsaicina/farmacología , Modelos Animales de Enfermedad , Técnicas de Placa-Clamp/métodos , Ratas Sprague-Dawley , Células Receptoras Sensoriales/efectos de los fármacos
6.
Respir Res ; 18(1): 199, 2017 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-29187212

RESUMEN

BACKGROUND: Asthma is characterized by chronic airway inflammation, airway hyperresponsiveness (AHR), and airway remodeling. While exposure of house dust mites (HDM) is a common cause of asthma, the pathogenesis of the HDM-induced asthma is not fully understood. Bronchopulmonary C-fibers (PCFs) contribute to the neurogenic inflammation, viral infection induced-persistent AHR, and ovalbumin induced collagen deposition largely via releasing neuropeptides, such as substance P (SP). However, PCF roles in the pathogenesis of the HDM-induced asthma remain unexplored. The goal of this study was to determine what role PCFs played in generating these characteristics. METHODS: We compared the following variables among the PCF-intact and -degenerated BALB/c mice with and without chronic HDM exposure (four groups): 1) AHR and pulmonary SP; 2) airway smooth muscle (ASM) mass; 3) pulmonary inflammatory cells; and 4) epithelium thickening and mucus secretion. RESULTS: We found that HDM evoked AHR associated with upregulation of pulmonary SP and inflammation, ASM mass increase, epithelium thickenings, and mucus hypersecretion. PCF degeneration decreased the HDM-induced changes in AHR, pulmonary SP and inflammation, and ASM mass, but failed to significantly affect the epithelium thickening and mucus hypersecretion. CONCLUSION: Our data suggest an involvement of PCFs in the mechanisms by which HDM induces allergic asthma via airway inflammation, AHR, and airway remodeling.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/fisiología , Fibras Nerviosas Amielínicas/patología , Fibras Nerviosas Amielínicas/fisiología , Pyroglyphidae , Hipersensibilidad Respiratoria/patología , Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Animales , Lavado Broncoalveolar , Líquido del Lavado Bronquioalveolar/inmunología , Broncoconstrictores/farmacología , Relación Dosis-Respuesta a Droga , Femenino , Cloruro de Metacolina/farmacología , Ratones , Ratones Endogámicos BALB C , Pyroglyphidae/inmunología , Hipersensibilidad Respiratoria/etiología , Hipersensibilidad Respiratoria/inmunología
7.
Eur J Neurosci ; 40(1): 2183-95, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24666389

RESUMEN

Previously, our electrophysiological studies revealed a transient imbalance between suppressed excitation and enhanced inhibition in hypoglossal motoneurons of rats on postnatal days (P) 12-13, a critical period when abrupt neurochemical, metabolic, ventilatory and physiological changes occur in the respiratory system. The mechanism underlying the imbalance is poorly understood. We hypothesised that the imbalance was contributed by a reduced expression of brain-derived neurotrophic factor (BDNF), which normally enhances excitation and suppresses inhibition. We also hypothesised that exogenous BDNF would partially reverse this synaptic imbalance. Immunohistochemistry/single-neuron optical densitometry, real-time quantitative PCR (RT-qPCR) and whole-cell patch-clamp recordings were done on hypoglossal motoneurons in brainstem slices of rats during the first three postnatal weeks. Our results indicated that: (1) the levels of BDNF and its high-affinity tyrosine receptor kinase B (TrkB) receptor mRNAs and proteins were relatively high during the first 1-1.5 postnatal weeks, but dropped precipitously at P12-13 before rising again afterwards; (2) exogenous BDNF significantly increased the normally lowered frequency of spontaneous excitatory postsynaptic currents but decreased the normally heightened amplitude and frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) during the critical period; (3) exogenous BDNF also decreased the normally heightened frequency of miniature IPSCs at P12-13; and (4) the effect of exogenous BDNF was partially blocked by K252a, a TrkB receptor antagonist. Thus, our results are consistent with our hypothesis that BDNF and TrkB play an important role in the synaptic imbalance during the critical period. This may have significant implications for the mechanism underlying sudden infant death syndrome.


Asunto(s)
Tronco Encefálico/crecimiento & desarrollo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Nervio Hipogloso/crecimiento & desarrollo , Neuronas Motoras/fisiología , Respiración , Sinapsis/fisiología , Animales , Animales Recién Nacidos , Tronco Encefálico/efectos de los fármacos , Tronco Encefálico/fisiología , Carbazoles/farmacología , Fármacos del Sistema Nervioso Central/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Nervio Hipogloso/efectos de los fármacos , Nervio Hipogloso/fisiología , Alcaloides Indólicos/farmacología , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Masculino , Potenciales Postsinápticos Miniatura/efectos de los fármacos , Potenciales Postsinápticos Miniatura/fisiología , Neuronas Motoras/efectos de los fármacos , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Receptor trkB/antagonistas & inhibidores , Receptor trkB/metabolismo , Respiración/efectos de los fármacos , Sinapsis/efectos de los fármacos , Técnicas de Cultivo de Tejidos
8.
Physiol Rep ; 12(5): e15965, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38444051

RESUMEN

Intravenous (systemic) bolus injection of fentanyl (FNT) reportedly induces an immediate vagal-mediated apnea; however, the precise origin of vagal afferents responsible for this apnea remains unknown. We tested whether intralaryngeal (local) application of FNT would also trigger an apnea and whether the apneic response to both local and systemic administration of FNT was laryngeal afferent-mediated. Cardiorespiratory responses to FNT were recorded in anesthetized male adult rats with and without bilateral sectioning of the superior laryngeal nerve (SLNx) or peri-SLN capsaicin treatment (SLNcap) to block local C-fiber signal conduction. Opioid mu-receptor (MOR)-immunoreactivity was detected in laryngeal C- and myelinated neurons. We found that local and systemic administration of FNT elicited an immediate apnea. SLNx, rather than SLNcap, abolished the apneic response to local FNT application though MORs were abundantly expressed in both laryngeal C- and myelinated neurons. Importantly, SLNx failed to affect the apneic response to systemic FNT administration. These results lead to the conclusion that laryngeal afferents' MORs are responsible for the apneic response to local, but not systemic, administration of FNT.


Asunto(s)
Líquidos Corporales , Fentanilo , Masculino , Animales , Ratas , Fentanilo/farmacología , Apnea/inducido químicamente , Administración Cutánea , Administración Intravenosa , Receptores Opioides
9.
FASEB J ; 31(12): 5625, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29191966
10.
Inorg Chem ; 52(24): 13875-81, 2013 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-24261544

RESUMEN

A novel host lattice disodium calcium ditin(IV) trigermanium oxide Na2CaSn2Ge3O12 was utilized for synthesizing long-persistent phosphorescence materials for the first time. Reddish orange long-persistent phosphorescence was observed in Na2CaSn2Ge3O12:Sm(3+) phosphors with persistence time more than 4.8 h. The phosphors were synthesized by a conventional solid-state reaction pathway in air atmosphere. A predominant cubic phase of Na2CaSn2Ge3O12 was observed in all XRD patterns. Photoluminescence measurements indicated that the emission spectrum was composed of the peaks located at 566 (the strongest), 605, 664, and 724 nm. The results of the decay curves in terms of a biexponential model suggest that different defects appear in the crystal lattice. The defects acting as traps were investigated by thermoluminescence, which demonstrated that doping Sm(3+) ions into the Na2CaSn2Ge3O12 host has made the trap types abundant. Furthermore, the origin of the long-persistent phosphorescence has also been discussed. On the basis of the above results, Sm(3+)-doped Na2CaSn2Ge3O12 phosphors are considered to have potential practical applications.

11.
Respir Physiol Neurobiol ; 313: 104053, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37019251

RESUMEN

Sudden Infant Death Syndrome (SIDS) occurs during sleep in seemingly healthy infants. Maternal cigarette smoking and hypoxemia during sleep are assumed to be the major causal factors. Depressed hypoxic ventilatory response (dHVR) is observed in infants with high risk of SIDS, and apneas (lethal ventilatory arrest) appear during the fatal episode of SIDS. Disturbance of the respiratory center has been proposed to be involved, but the pathogenesis of SIDS is still not fully understood. Peripherally, the carotid body is critical to generate HVR, and bronchopulmonary and superior laryngeal C-fibers (PCFs and SLCFs) are important for triggering central apneas; however, their roles in the pathogenesis of SIDS have not been explored until recently. There are three lines of recently accumulated evidence to show the disorders of peripheral sensory afferent-mediated respiratory chemoreflexes in rat pups with prenatal nicotinic exposure (a SIDS model) in which acute severe hypoxia leads to dHVR followed by lethal apneas. (1) The carotid body-mediated HVR is suppressed with a reduction of the number and sensitivity of glomus cells. (2) PCF-mediated apneic response is largely prolonged via increased PCF density, pulmonary IL-1ß and serotonin (5-hydroxytryptamine, 5-HT) release, along with the enhanced expression of TRPV1, NK1R, IL1RI and 5-HT3R in pulmonary C-neurons to strengthen these neural responses to capsaicin, a selective stimulant to C-fibers. (3) SLCF-mediated apnea and capsaicin-induced currents in superior laryngeal C-neurons are augmented by upregulation of TRPV1 expression in these neurons. These results, along with hypoxic sensitization/stimulation of PCFs, gain insight into the mechanisms of prenatal nicotinic exposure-induced peripheral neuroplasticity responsible for dHVR and long-lasting apnea during hypoxia in rat pups. Therefore, in addition to the disturbance in the respiratory center, the disorders of peripheral sensory afferent-mediated chemoreflexes may also be involved in respiratory failure and death denoted in SIDS victims.


Asunto(s)
Nicotina , Muerte Súbita del Lactante , Embarazo , Femenino , Animales , Ratas , Nicotina/efectos adversos , Nicotina/metabolismo , Apnea/inducido químicamente , Muerte Súbita del Lactante/etiología , Capsaicina/farmacología , Serotonina/metabolismo , Fibras Nerviosas Amielínicas , Hipoxia/metabolismo
12.
ACS Appl Mater Interfaces ; 15(17): 21228-21238, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37078901

RESUMEN

Persistent luminescence nanoparticle scintillators (PLNS) have been attempted for X-ray-induced photodynamic therapy (X-PDT) because persistent luminescence after ceasing radiation can make PLNS use less cumulative irradiation time and dose to generate the same amount of reactive oxygen species (ROS) compared with conventional scintillators to combat cancer cells. However, excessive surface defects in PLNS reduce the luminescence efficiency and quench the persistent luminescence, which is fatal to the efficacy of X-PDT. Herein, the PLNS of SiO2@Zn2SiO4:Mn2+, Yb3+, Li+ was designed by the energy trap engineering and synthesized by a simple template method, which has excellent X-ray and UV-excited persistent luminescence and continuously tunable emission spectra from 520 to 550 nm. Its luminescence intensity and afterglow time are more than 7 times that of the reported Zn2SiO4:Mn2+ used for X-PDT. By loading a Rose Bengal (RB) photosensitizer, an effective persistent energy transfer from the PLNS to photosensitizer is observed even after the removal of X-ray irradiation. The X-ray dose of nanoplatform SiO2@Zn2SiO4:Mn2+, Yb3+, Li+@RB in X-PDT of HeLa cancer cells was reduced to 0.18 Gy compared to the X-ray dose of 1.0 Gy for Zn2SiO4:Mn for X-PDT. This indicates that the Zn2SiO4:Mn2+, Yb3+, Li+ PLNS have great potential for X-PDT applications.

13.
Respir Physiol Neurobiol ; 306: 103952, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35905863

RESUMEN

Exposure to aerosolized citric acid (CA, 150 mM) and prostaglandin E2 (PGE2, 0.43 mM) for 10 min in guinea pigs reportedly produces the distinct cough patterns (Type I vs. II) and ventilatory responses (long-lasting hyperventilation vs. brief tachypnea) even though triggering the same cough numbers. Type I and II coughs are primarily mediated by activation of TRPV1 and EP3 receptors (a PGE2 receptor) of vagal C-fibers respectively. Substance P (SP) and neurokinin A (NKA) released by vagal pulmonary sensory fibers peripherally are capable of affecting CA-induced cough and ventilation via preferentially activating neurokinin 1 and 2 receptors (NK1R and NK2R) respectively. This study aimed to define the impacts of CA- and PGE2-exposure on pulmonary SP and NKA levels and the roles of NK1R and NK2R in modulating CA- and PGE2-evoked cough and ventilatory responses. In unanesthetized guinea pigs, we determined: (1) pulmonary SP and NKA contents induced by the CA- or PGE2-exposure; (2) effects of CP-99994 and SR-48968 (a NK1R and a NK2R antagonist respectively) given by intraperitoneal injection (IP) or aerosol inhalation (IH) on the CA- and PGE2-evoked cough and ventilatory responses; and (3) immunocytochemical expressions of NK1R/NK2R in vagal C-neurons labeled by TRPV1 or EP3 receptors. We found that CA- and PGE2-exposure evoked Type I and II cough respectively associated with different degrees of increases in pulmonary SP and NKA. Applications of CP-99994 and SR-48968 via IP and IH efficiently suppressed the cough responses to CA with less impact on the cough response to PGE2. These antagonists inhibited or blocked the ventilatory response to CA and caused hypoventilation in response to PGE2. Moreover, NK1R and NK2R were always co-expressed in vagal C-neurons labeled by TRPV1 or EP3 receptors. These results suggest that SP and NKA endogenously released by CA- and PGE2-exposure play important roles in generating the cough and ventilatory responses to CA and PGE2, at least in part, via activation of NK1R and NK2R expressed in vagal C-neurons (pulmonary C-neurons).


Asunto(s)
Neuroquinina A , Sustancia P , Animales , Benzamidas , Ácido Cítrico/farmacología , Tos/inducido químicamente , Dinoprostona , Cobayas , Neuroquinina A/farmacología , Piperidinas , Receptores de Neuroquinina-1/metabolismo , Receptores de Neuroquinina-2/metabolismo , Aerosoles y Gotitas Respiratorias , Sustancia P/farmacología
14.
Nanoscale ; 14(25): 8978-8985, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35687017

RESUMEN

The multifunctional theranostic nanoplatform based on the combination of persistent luminescent nanoparticles (PLNPs) and metal-organic frameworks (MOFs) has both in vivo imaging and tumor therapeutic drug-loading functions, providing a new strategy for accurate and effective tumor diagnosis and treatment. Herein, the near-infrared (NIR) PLNP SiO2@Zn1.05Ga1.9O4:Cr was combined with HKUST-1 MOFs to form a core-shell structure theranostic nanoplatform which possessed the triple function of autofluorescence-free NIR PersL bioimaging, tumor chemodynamic therapy (CDT), and tumor photothermal therapy (PTT). Also, the photothermal conversion efficiency reached 58.7%, which is superior to the reported nano metal-organic framework (NMOF) photothermal reagents. We demonstrated that the nanoplatform could enter the tumors of mice within 0.5 h and could be target-activated by H2O2 and H2S in the tumor cells, resulting in effective PTT and CDT synergistic treatment. Tumor-bearing mice experiments showed that the tumor could be completely cured without harming normal tissue. This theranostic nanoplatform may provide a promising strategy showing imaging, PTT, and CDT synergistic treatment tri-mode for clinical cancer therapy.


Asunto(s)
Nanopartículas , Neoplasias , Animales , Línea Celular Tumoral , Peróxido de Hidrógeno/uso terapéutico , Luminiscencia , Estructuras Metalorgánicas , Ratones , Nanopartículas/química , Nanopartículas/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Fototerapia , Terapia Fototérmica , Dióxido de Silicio/farmacología , Nanomedicina Teranóstica
15.
J Physiol ; 589(Pt 8): 1991-2006, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21486774

RESUMEN

Hypoglossal motoneurons (HMs) innervate tongue muscles and are critical in maintaining patency of the upper airway during respiration. Abnormalities in HMs have been implicated in sudden infant death syndrome (SIDS) and obstructive sleep apnoea. Previously, we found a critical period in respiratory network development in rats around postnatal day (P) 12-13, when abrupt neurochemical, metabolic and physiological changes occurred. To test our hypothesis that an imbalance between inhibitory and excitatory synaptic transmission exists during the critical period, whole-cell patch-clamp recordings of HMs were done in brainstem slices of rats daily from P0 to P16. The results indicated that: (1) the amplitude and charge transfer of miniature excitatory postsynaptic currents (mEPSCs) were significantly reduced at P12-13; (2) the amplitude, mean frequency and charge transfer of miniature inhibitory postsynaptic currents (mIPSCs) were significantly increased at P12-13; (3) the kinetics (rise time and decay time) of both mEPSCs and mIPSCs accelerated with age; (4) the amplitude and frequency of spontaneous EPSCs were significantly reduced at P12-13, whereas those of spontaneous IPSCs were significantly increased at P12-13; and (5) both glycine and GABA contributed to mIPSCs. However, GABAergic currents fluctuated within a narrow range during the first three postnatal weeks, whereas glycinergic ones exhibited age-dependent changes comparable to those of total mIPSCs, indicating a reversal in dominance from GABA to glycine with development. Thus, our results provide strong electrophysiological evidence for an excitatory-inhibitory imbalance in HMs during the critical period of postnatal development in rats that may have significant implications for SIDS.


Asunto(s)
Tronco Encefálico/crecimiento & desarrollo , Nervio Hipogloso/crecimiento & desarrollo , Neuronas Motoras/fisiología , Inhibición Neural , Transmisión Sináptica , Lengua/inervación , Factores de Edad , Envejecimiento , Análisis de Varianza , Animales , Animales Recién Nacidos , Tronco Encefálico/citología , Tronco Encefálico/efectos de los fármacos , Tronco Encefálico/metabolismo , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores , Glicina/metabolismo , Humanos , Nervio Hipogloso/citología , Nervio Hipogloso/efectos de los fármacos , Nervio Hipogloso/metabolismo , Técnicas In Vitro , Lactante , Potenciales Postsinápticos Inhibidores , Cinética , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Neurotransmisores/farmacología , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Muerte Súbita del Lactante/etiología , Transmisión Sináptica/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo
16.
J Physiol ; 589(Pt 20): 4847-55, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21911610

RESUMEN

The endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG) is hydrolysed primarily by monoacylglycerol lipase (MAGL). Here, we investigated whether eCB-mediated retrograde synaptic depression in cerebellar slices was altered in MAGL knockout (MAGL(-/-)) mice. Depolarization-induced suppression of excitation (DSE) and metabotropic glutamate receptor (mGluR1)-mediated synaptic depression are mediated by 2-AG-induced activation of CB(1) receptors. We show that genetic deletion of MAGL prolonged DSE at parallel fibre (PF) or climbing fibre (CF) to Purkinje cell (PC) synapses. Likewise, mGluR1-mediated synaptic depression, induced either by high-frequency stimulation of PF or mGluR1 agonist DHPG, was prolonged in MAGL(-/-) mice. About 15% of 2-AG in the brain is hydrolysed by serine hydrolase α-ß-hydrolase domain 6 and 12 (ABHD6 and ABHD12). However, the selective ABHD6 inhibitor WWL123 had no significant effect on cerebellar DSE in MAGL(+/+) and (-/-) mice. The CB(1) receptor antagonist SR141716 significantly increased the amplitude of basal excitatory postsynaptic currents (EPSCs) in MAGL(-/-) mice but not in MAGL(+/+) mice. Conversely, the CB(1) agonist WIN55212 induced less depression of basal EPSCs in MAGL(-/-) mice than in MAGL(+/+) mice. These results provide genetic evidence that inactivation of 2-AG by MAGL determines the time course of eCB-mediated retrograde synaptic depression and that genetic deletion of MAGL causes tonic activation and consequential desensitization of CB(1) receptors.


Asunto(s)
Ácidos Araquidónicos/farmacología , Moduladores de Receptores de Cannabinoides/farmacología , Cerebelo/fisiología , Endocannabinoides , Glicéridos/farmacología , Monoacilglicerol Lipasas/deficiencia , Receptor Cannabinoide CB1/fisiología , Transmisión Sináptica/efectos de los fármacos , Animales , Cerebelo/efectos de los fármacos , Femenino , Eliminación de Gen , Técnicas In Vitro , Masculino , Ratones , Ratones Noqueados , Monoacilglicerol Lipasas/genética , Técnicas de Placa-Clamp , Células de Purkinje/efectos de los fármacos , Células de Purkinje/fisiología , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/antagonistas & inhibidores
17.
J Appl Physiol (1985) ; 131(3): 986-996, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34323594

RESUMEN

Aerosolized adenosine 5'-triphosphate (ATP) induces cough and bronchoconstriction by activating vagal sensory fibers' P2X3 and P2X2/3 receptors (P2X3R and P2X2/3R). The goal of this study is to determine the effect of these receptors on the superior laryngeal nerve (SLN)-mediated cardiorespiratory responses to ATP challenge. We compared the cardiorespiratory responses to intralaryngeal perfusion of either ATP or α,ß-methylene ATP in rat pups before and after 1) intralaryngeal perfusion of A-317491 (a P2X3R and P2X2/3R antagonist); 2) bilateral section of the SLN; and 3) peri-SLN treatment with capsaicin (to block conduction in superior laryngeal C-fibers, SLCFs) or A-317491. The immunoreactivity (IR) of P2X3R and P2X2R was determined in laryngeal sensory neurons of the nodose/jugular ganglia. Lastly, a whole cell patch clamp recording was used to determine ATP- or α,ß-methylene ATP (α,ß-mATP)-induced currents without and with A-317491 treatment. It was found that intralaryngeal perfusion of both ATP and α,ß-mATP induced immediate apnea, hypertension, and bradycardia. The apnea was eliminated and the hypertension and bradycardia were blunted by intralaryngeal perfusion of A-317491 and peri-SLN treatment with either A-317491 or capsaicin, although all of the cardiorespiratory responses were abolished by bilateral section of the SLN. P2X3R- and P2X2R-IR were observed in nodose and jugular ganglionic neurons labeled by fluoro-gold (FG). ATP- and α,ß-mATP-induced currents recorded in laryngeal C-neurons were reduced by 75% and 95%, respectively, by the application of A-317491. It is concluded that in anesthetized rat pups, the cardiorespiratory responses to intralaryngeal perfusion of either ATP or α,ß-mATP are largely mediated by the activation of SLCFs' P2X3R-P2X2/3R.NEW & NOTEWORTHY Aerosolized ATP induces cough and bronchoconstriction via activating P2X3 and P2X2/3 receptors (P2X3R and P2X2/3R) localized on vagal pulmonary sensory fibers. The superior laryngeal nerve (SLN), particularly SLN C-fibers (SLCFs), is involved in generating apnea, hypertension, and bradycardia. This study demonstrates for the first time that either ATP or α,ß-mATP applied onto the laryngeal mucosa elicit these cardiorespiratory responses predominately through the activation of P2X3R-P2X2/3R localized on SLCFs.


Asunto(s)
Apnea , Receptores Purinérgicos P2 , Adenosina Trifosfato , Animales , Nervios Laríngeos , Fibras Nerviosas Amielínicas , Ratas , Células Receptoras Sensoriales
18.
PLoS One ; 16(2): e0246375, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33529249

RESUMEN

Prostaglandin E2 (PGE2)-induced coughs in vivo and vagal nerve depolarization in vitro are inhibited by systemic and local administration of prostaglandin EP3 receptor (L-798106) and TRPV1 antagonists (JNJ 17203212). These results indicate a modulating effect of TRPV1 on the EP3 receptor-mediated cough responses to PGE2 likely through the vagal sensory nerve. This study aimed to determine whether 1) inhalation of aerosolized JNJ 17203212 and L-798106 affected cough responses to citric acid (CA, mainly stimulating TRPV1) and PGE2; 2) TRPV1 and EP3 receptor morphologically are co-expressed and electrophysiologically functioned in the individual of vagal pulmonary C-neurons (cell bodies of bronchopulmonary C-fibers in the nodose/jugular ganglia); and 3) there was a cross-effect of TRPV1 and EP3 receptor on these neural excitations. To this end, aerosolized CA or PGE2 was inhaled by unanesthetized guinea pigs pretreated without or with each antagonist given in aerosol form. Immunofluorescence was applied to identify the co-expression of TRPV1 and EP3 receptor in vagal pulmonary C-neurons (retrogradely traced by DiI). Whole-cell voltage patch clamp approach was used to detect capsaicin (CAP)- and PGE2-induced currents in individual vagal pulmonary C-neurons and determine the effects of the TRPV1 and EP3 receptor antagonists on the evoked currents. We found that PGE2-induced cough was attenuated by JNJ 17203212 or L-798106 and CA-evoked cough greatly suppressed only by JNJ 17203212. Approximately 1/4 of vagal pulmonary C-neurons co-expressed EP3 with a cell size < 20 µm. Both CAP- and PGE2-induced currents could be recorded in the individuals of some vagal pulmonary C-neurons. The former was largely inhibited only by JNJ 17203212, while the latter was suppressed by JNJ 17203212 or L-798106. The similarity of the cross-effect of both antagonists on cough and vagal pulmonary C-neural activity suggests that a subgroup of vagal pulmonary C-neurons co-expressing TRPV1 and EP3 receptor is, at least in part, responsible for the cough response to PGE2.


Asunto(s)
Bronquios/metabolismo , Tos/metabolismo , Fibras Nerviosas Amielínicas/metabolismo , Subtipo EP3 de Receptores de Prostaglandina E/metabolismo , Canales Catiónicos TRPV/metabolismo , Aminopiridinas/farmacología , Animales , Capsaicina , Ácido Cítrico/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dinoprostona , Cobayas , Activación del Canal Iónico/efectos de los fármacos , Masculino , Modelos Biológicos , Fibras Nerviosas Amielínicas/efectos de los fármacos , Ganglio Nudoso/efectos de los fármacos , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Ventilación Pulmonar/efectos de los fármacos , Subtipo EP3 de Receptores de Prostaglandina E/antagonistas & inhibidores , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Canales Catiónicos TRPV/antagonistas & inhibidores , Nervio Vago/efectos de los fármacos , Nervio Vago/metabolismo
19.
PLoS One ; 16(11): e0251389, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34793480

RESUMEN

Glycinebetaine (GB) is an osmoprotectant found in plants under environmental stresses that incorporates drought and is associated with drought tolerance in several plants, such as the woody pear. However, how GB improves drought tolerance in pears remains unclear. In the current study, we explored the mechanism by which GB enhances drought tolerance of whole pear plants (Pyrus bretschneideri Redh. cv. Suli) supplied with exogenous GB. The results showed that on the sixth day after withholding water, levels of O2·-, H2O2, malonaldehyde (MDA) and electrolyte leakage in the leaves were substantially increased by 143%, 38%, 134% and 155%, respectively. Exogenous GB treatment was substantially reduced O2·-, H2O2, MDA and electrolyte leakage (38%, 24%, 38% and 36%, respectively) in drought-stressed leaves. Furthermore, exogenous GB induced considerably higher antioxidant enzyme activity in dry-stressed leaves than drought-stressed treatment alone on the sixth day after withholding water, such as superoxide dismutase (SOD) (201%) and peroxidase (POD) (127%). In addition, these GB-induced phenomena led to increased endogenous GB levels in the leaves of the GB 100 + drought and GB 500 + drought treatment groups by 30% and 78%, respectively, compared to drought treatment alone. The findings obtained were confirmed by the results of the disconnected leaf tests, in which GB contributed to a substantial increase in SOD activity and parallel dose- and time-based decreases in MDA levels. These results demonstrate that GB-conferred drought resistance in pears may be due in part to minimizing symptoms of oxidative harm incurred in response to drought by the activities of antioxidants and by reducing the build-up of ROS and lipid peroxidation.


Asunto(s)
Betaína/farmacología , Presión Osmótica/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Pyrus/metabolismo , Sequías , Peroxidación de Lípido/efectos de los fármacos , Malondialdehído/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Pyrus/efectos de los fármacos , Superóxido Dismutasa/metabolismo
20.
PLoS One ; 14(5): e0217366, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31116792

RESUMEN

Cough number and/or sound have been used to assess cough sensitivity/intensity and to discriminate cough patterns in clinical settings. However, to date, only manual counting of cough number in an offline manner is applied in animal cough studies, which diminishes the efficiency of cough identification and hinders the diagnostic discrimination of cough patterns, especially in animals with pulmonary diseases. This study aims to validate a novel recording/analysis system by which cough numbers are automatically counted and cough patterns are comprehensively differentiated in real time. The experiment was carried out in conscious guinea pigs exposed to aerosolized citric acid (CA, 150 mM) and prostaglandin E2 (PGE2, 0.43 mM). Animal body posture (video), respiratory flow, and cough acoustics (audio) were simultaneously monitored and recorded. Cough number was counted automatically, and cough sound parameters including waveform, duration, power spectral density, spectrogram, and intensity, were analyzed in real time. Our results showed that CA- and PGE2-evoked coughs had the same cough numbers but completely different patterns [individual coughs vs. bout(s) of coughs]. Compared to CA-evoked coughs, PGE2-evoked coughs possess a longer latency, higher cough rate (coughs/min), shorter cough sound duration, lower cough sound intensity, and distinct cough waveforms and spectrograms. A few mucus- and wheeze-like coughs were noted in response to CA but not to PGE2. In conclusion, our recording/analysis system is capable of automatically counting the cough number and successfully differentiating the cough pattern by using valuable cough sound indexes in real time. Our system enhances the objectivity, accuracy, and efficiency of cough identification and count, improves the intensity evaluation, and offers ability for pattern discrimination compared to traditional types of cough identification. Importantly, this approach is beneficial for assessing the efficacy of putative antitussive drugs in animals without or with pulmonary diseases, particularly in cases without significant change in cough number.


Asunto(s)
Ácido Cítrico/administración & dosificación , Tos/inducido químicamente , Tos/fisiopatología , Dinoprostona/administración & dosificación , Acústica , Aerosoles , Animales , Modelos Animales de Enfermedad , Cobayas , Humanos , Hiperventilación/inducido químicamente , Hiperventilación/fisiopatología , Masculino , Pletismografía Total , Frecuencia Respiratoria/efectos de los fármacos , Volumen de Ventilación Pulmonar/efectos de los fármacos , Grabación en Video
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA