Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 346
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brief Bioinform ; 24(5)2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37539831

RESUMEN

Duplex sequencing technology has been widely used in the detection of low-frequency mutations in circulating tumor deoxyribonucleic acid (DNA), but how to determine the sequencing depth and other experimental parameters to ensure the stable detection of low-frequency mutations is still an urgent problem to be solved. The mutation detection rules of duplex sequencing constrain not only the number of mutated templates but also the number of mutation-supportive reads corresponding to each forward and reverse strand of the mutated templates. To tackle this problem, we proposed a Depth Estimation model for stable detection of Low-Frequency MUTations in duplex sequencing (DELFMUT), which models the identity correspondence and quantitative relationships between templates and reads using the zero-truncated negative binomial distribution without considering the sequences composed of bases. The results of DELFMUT were verified by real duplex sequencing data. In the case of known mutation frequency and mutation detection rule, DELFMUT can recommend the combinations of DNA input and sequencing depth to guarantee the stable detection of mutations, and it has a great application value in guiding the experimental parameter setting of duplex sequencing technology.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación , Neoplasias/genética , Tasa de Mutación , ADN
2.
J Am Chem Soc ; 146(31): 21377-21388, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39046802

RESUMEN

Aqueous zinc (Zn) iodine (I2) batteries have emerged as viable alternatives to conventional metal-ion batteries. However, undesirable Zn deposition and irreversible iodine conversion during cycling have impeded their progress. To overcome these concerns, we report a dynamical interface design by cation chemistry that improves the reversibility of Zn deposition and four-electron iodine conversion. Due to this design, we demonstrate an excellent Zn-plating/-stripping behavior in Zn||Cu asymmetric cells over 1000 cycles with an average Coulombic efficiency (CE) of 99.95%. Moreover, the Zn||I2 full cells achieve a high-rate capability (217.1 mA h g-1 at 40 A g-1; C rate of 189.5C) at room temperature and enable stable cycling with a CE of more than 99% at -50 °C at a current density of 0.05 A g-1. In situ spectroscopic investigations and simulations reveal that introducing tetraethylammonium cations as ion sieves can dynamically modulate the electrode-electrolyte interface environment, forming the unique water-deficient and chloride ion (Cl-)-rich interface. Such Janus interface accounts for the suppression of side reactions, the prevention of ICl decomposition, and the enrichment of reactants, enhancing the reversibility of Zn-stripping/-plating and four-electron iodine chemistry. This fundamental understanding of the intrinsic interplay between the electrode-electrolyte interface and cations offers a rational standpoint for tuning the reversibility of iodine conversion.

3.
Anal Chem ; 96(42): 16964-16970, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39376149

RESUMEN

Keloids represent pathologic conditions characterized by the presence of hyalinized collagen bundles and chronic inflammatory reactions. Recently, increased ROS production and disrupted apoptosis mechanisms in keloids have been reported, although the detailed mechanisms remain unclear. Herein, we developed a specific fluorescence probe, Pro-NBS, to investigate ClO- levels in keloids. The probe demonstrated high specificity for ClO- over other ROS and exhibited a strong linear detection relationship. Based on its performance, we focused on the TGF-ß pathway in the development of keloids. ROS upregulation was observed in keloid-derived fibroblasts. Using ClO- as an intrinsic overexpression marker, our probe effectively distinguished between normal fibroblasts and keloid-derived fibroblasts both in vitro and in vivo. Furthermore, Pro-NBS showed potential for monitoring the progression and evaluating the systematic therapy of abnormal scarring or keloids.


Asunto(s)
Colorantes Fluorescentes , Ácido Hipocloroso , Queloide , Queloide/metabolismo , Queloide/diagnóstico , Queloide/patología , Ácido Hipocloroso/análisis , Ácido Hipocloroso/metabolismo , Colorantes Fluorescentes/química , Humanos , Fibroblastos/metabolismo , Animales , Diagnóstico Precoz , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/análisis , Ratones , Imagen Óptica
4.
Small ; 20(31): e2400252, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38461522

RESUMEN

Owing to the high economic efficiency and energy density potential, manganese-based layer-structured oxides have attracted great interests as cathode materials for potassium ion batteries. In order to alleviate the continuous phase transition and K+ re-embedding from Jahn-Teller distortion, the [Mn-Co-Mo]O6 octahedra are introduced into P3-K0.45MnO2 herein to optimize the local electron structure. Based on the experimental and computational results, the octahedral center metal molybdenum in [MoO6] octahedra proposes a smaller ionic radius and higher oxidation state to induce second-order JTE (pseudo-JTE) distortion in the adjacent [MnO6] octahedra. This distortion compresses the [MnO6] octahedra along the c-axis, leading to an increased interlayer spacing in the K+ layer. Meanwhile, the Mn3+/Mn4+ is balanced by [CoO6] octahedra and the K+ diffusion pathway is optimized as well. The proposed P3-K0.45Mn0.9Co0.05Mo0.05O2 cathode material shows an enhanced cycling stability and rate performance. It demonstrates a high capacity of 80.2 mAh g-1 at 100 mAh g-1 and 77.3 mAh g-1 at 500 mAh g-1. Furthermore, it showcases a 2000 cycles stability with a 59.6% capacity retention. This work presents a promising solution to the challenges faced by manganese-based layered oxide cathodes and offers a deep mechanism understanding and improved electrochemical performance.

5.
Small ; : e2406453, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358949

RESUMEN

The layer-structured oxide cathode for sodium-ion batteries has attracted a widespread attention due to the unique redox properties and the anionic redox activity providing additional capacity. Nevertheless, such excessive oxygen redox reactions will lead to irreversible oxygen release, resulting in a rapid deterioration of the cycling stability. Herein, sulfur ion is successfully introduced to the O3-NaNi0.3Mn0.5Cu0.1Ti0.05W0.05O2 material through high-temperature quenching, thereby developing a novel Na2S-modified O3/P2-NaNi0.3Mn0.5Cu0.1Ti0.05W0.05O2 composite with extended cycling life. The S2- is analyzed for the ability to enhance the reversibility of oxidation-reduction reactions under high voltage and suppress the loss of lattice oxygen during cycling. The stable S─O covalent bonds are found to inhibit the oxygen generation and release within the structure. Benefiting from these improvements, the Na2S-modified O3/P2-NaNi0.3Mn0.5Cu0.1Ti0.05W0.05O2 exhibited a high reversible capacity of 173.1 mA h g-1 over a wide voltage range of 1.5-4.3 V under test conditions at 0.1 C and 81.5% capacity retention after 120 cycles at 1 C. The Na2S-modified O3/P2-NaNi0.3Mn0.5Cu0.1Ti0.05W0.05O2 demonstrates the excellent rate capability with the reversible capacities of 173.1,137.0,114.7,96.7, and 80.1 mA h g-1 at 0.1, 0.2, 0.5, 1, and 2 C.

6.
J Transl Med ; 22(1): 189, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383412

RESUMEN

BACKGROUND: Combined small-cell lung carcinoma (cSCLC) represents a rare subtype of SCLC, the mechanisms governing the evolution of cancer genomes and their impact on the tumor immune microenvironment (TIME) within distinct components of cSCLC remain elusive. METHODS: Here, we conducted whole-exome and RNA sequencing on 32 samples from 16 cSCLC cases. RESULTS: We found striking similarities between two components of cSCLC-LCC/LCNEC (SCLC combined with large-cell carcinoma/neuroendocrine) in terms of tumor mutation burden (TMB), tumor neoantigen burden (TNB), clonality structure, chromosomal instability (CIN), and low levels of immune cell infiltration. In contrast, the two components of cSCLC-ADC/SCC (SCLC combined with adenocarcinoma/squamous-cell carcinoma) exhibited a high level of tumor heterogeneity. Our investigation revealed that cSCLC originated from a monoclonal source, with two potential transformation modes: from SCLC to SCC (mode 1) and from ADC to SCLC (mode 2). Therefore, cSCLC might represent an intermediate state, potentially evolving into another histological tumor morphology through interactions between tumor and TIME surrounding it. Intriguingly, RB1 inactivation emerged as a factor influencing TIME heterogeneity in cSCLC, possibly through neoantigen depletion. CONCLUSIONS: Together, these findings delved into the clonal origin and TIME heterogeneity of different components in cSCLC, shedding new light on the evolutionary processes underlying this enigmatic subtype.


Asunto(s)
Adenocarcinoma , Carcinoma de Células Grandes , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Microdisección , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/patología , Adenocarcinoma/genética , Carcinoma de Células Grandes/genética , Carcinoma de Células Grandes/patología , Genómica , Microambiente Tumoral/genética
7.
Opt Lett ; 49(6): 1571-1574, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489453

RESUMEN

Compensating for the intrinsic attosecond chirp (atto-chirp) of wideband high-order harmonics in the water window region is a significant challenge, in order to obtain isolated attosecond pulses (IAPs) with a width of tens of attoseconds (as). Here, we propose to realize the generation of IAP with duration as short as 20 as, central energy of 365 eV, and bandwidth exceeding 150 eV from chirp-free high harmonics generated by a four-color driving laser, without the necessity for atto-chirp compensation with natural materials. Unlike any other gating methods that an IAP arises from only one electron ionization event, we take advantage of the interference between harmonic radiation produced by multiple ionizing events. We further demonstrate that such chirp-free short IAP survives after taking account of macroscopic propagation effects. Given that the synthesized multicolor laser field can also effectively increase the harmonic flux, this work provides a practical way for experiments to generate the broad bandwidth chirp-free IAPs in the water window region.

8.
Chemistry ; : e202402558, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158512

RESUMEN

The high electrochemical reactivity of H2O molecules and zinc metal results in severe side reactions and dendrite formation on zinc anodes. Here we demonstrate that these issues can be addressed by using N-hydroxymethylacetamide (NHA) as additives in 2 M ZnSO4 electrolytes. The addition of NHA molecules, acting as both a hydrogen bond donor and acceptor, enables the formation of cyclic hydrogen bonding with H2O molecules. This interaction disrupts the existing hydrogen bonding networks between H2O molecules, hindering proton transport, and containing H2O molecules within the cyclic hydrogen bonding structure to prevent deprotonation. Additionally, NHA molecules show a preference for adsorption on the (101) crystal surface of zinc metal. This preferential adsorption reduces the surface energy of the (101) plane, facilitating the homogeneous Zn deposition along the (101) direction. Thus, the NHA enables Zn||Zn symmetric cell with a cycle lifespan of 1100 hours at 5 mA cm-2 and Zn||Cu asymmetric cell with a high Coulombic efficiency over 99.5 %. Moreover, the NHA-modified Zn||AC zinc ion hybrid capacitor is capable of sustaining 15000 cycles at 2 A g-1. This electrolyte additive engineering presents a promising strategy to enhance the performance and broaden the application potential of zinc metal-based energy storage devices.

9.
BMC Gastroenterol ; 24(1): 11, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166741

RESUMEN

BACKGROUND: Exploring predictive biomarkers and therapeutic strategies of ICBs has become an urgent need in clinical practice. Increasing evidence has shown that ARID1A deficiency might play a critical role in sculpting tumor environments in various tumors and might be used as pan-cancer biomarkers for immunotherapy outcomes. The current study aims to explored the immune-modulating role of ARID1A deficiency in Hepatitis B virus (HBV) related hepatocellular carcinoma (HBV-HCC) and its potential immunotherapeutic implications. METHODS: In the current study, we performed a comprehensive analysis using bioinformatics approaches and pre-clinical experiments to evaluate the ARID1A regulatory role on the biological behavior, and immune landscape of Hepatitis B virus (HBV) related hepatocellular carcinoma (HBV-HCC). A total of 425 HBV-related hepatocellular carcinoma patients from TCGA-LIHC, AMC and CHCC-HBV cohort were enrolled in bioinformatics analysis. Immunohistochemical staining of HBV-HCC specimens and ARID1A deficiency cellular models were used to validate the results of the analysis. RESULTS: Our results have shown that ARID1A deficiency promoted tumor proliferation and metastasis. More importantly, ARID1A deficiency in HBV-HCC was associated with the higher TMB, elevated immune activity, and up-regulated expression of immune checkpoint proteins, especially TIM-3 in HBV-HCC. Further, the expression of Galectin-9, which is the ligand of TIM-3, was elevated in the ARID1A knockout HBV positive cell line. CONCLUSION: To conclude, we have shown that the ARID1A deficiency was correlated with more active immune signatures and higher expression of immune checkpoints in HBV-HCC. Additionally, the present study provides insights to explore the possibility of the predictive role of ARID1A in HBV-HCC patients responsive to immunotherapy.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis B , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Virus de la Hepatitis B/genética , Neoplasias Hepáticas/patología , Receptor 2 Celular del Virus de la Hepatitis A , Biomarcadores de Tumor , Hepatitis B/complicaciones , Proteínas de Unión al ADN , Factores de Transcripción
10.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39125955

RESUMEN

BACKGROUND: Auxin, a plant hormone, plays diverse roles in the modulation of plant growth and development. The transport and signal transduction of auxin are regulated by various factors involved in shaping plant morphology and responding to external environmental conditions. The auxin signal transduction is primarily governed by the following two gene families: the auxin response factor (ARF) and auxin/indole-3-acetic acid (AUX/IAA). However, a comprehensive genomic analysis involving the expression profiles, structures, and functional features of the ARF and AUX/IAA gene families in Vaccinium bracteatum has not been carried out to date. RESULTS: Through the acquisition of genomic and expression data, coupled with an analysis using online tools, two gene family members were identified. This groundwork provides a distinguishing characterization of the chosen gene families in terms of expression, interaction, and response in the growth and development of plant fruits. In our genome-wide search of the VaARF and VaIAA genes in Vaccinium bracteatum, we identified 26 VaARF and 17 VaIAA genes. We analyzed the sequence and structural characteristics of these VaARF and VaIAA genes. We found that 26 VaARF and 17 VaIAA genes were divided into six subfamilies. Based on protein interaction predictions, VaIAA1 and VaIAA20 were designated core members of VaIAA gene families. Moreover, an analysis of expression patterns showed that 14 ARF genes and 12 IAA genes exhibited significantly varied expressions during fruit development. CONCLUSION: Two key genes, namely, VaIAA1 and VaIAA20, belonging to a gene family, play a potentially crucial role in fruit development through 26 VaARF-IAAs. This study provides a valuable reference for investigating the molecular mechanism of fruit development and lays the foundation for further research on Vaccinium bracteatum.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Familia de Multigenes , Proteínas de Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Genoma de Planta , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/genética , Vaccinium/genética , Vaccinium/metabolismo , Frutas/genética , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Angew Chem Int Ed Engl ; : e202415251, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39383296

RESUMEN

The aqueous zinc-ion batteries (AZIB) have emerged as a promising technology in the realm of electrochemical energy storage. Despite its potential advantages in terms of safety, cost-effectiveness, and inherent safety, AZIB faces significant challenges. Issues attributed to unsupported thermodynamics and non-uniform potential distribution and deposition, present formidable obstacles that necessitate resolution. To tackle these challenges, a novel strategy adapting hybrid organic-inorganic in-situ derived solid-to-hydrogel electrolyte interface (StHEI) has been developed from coordination reactions and self-respiratory process, establishing uniform diffusion channels by ion bridges and accelerating ion transport. Self-respiratory pattern of StHEI realized through in-situ inorganic component conversion further prolongs the protecting duration, which effectively mitigates corrosion and passivation but enhance the mechanical properties of the StHEI measured through Young's modulus. This novel StHEI promotes well-distributed potential lines within the Helmholtz regions. Zn2+ are finally induced to deposit and nucleate in a compact, fine, and uniform manner. Asymmetrical batteries assembled with the modified Zn electrode and bare Zn exhibit exceptional stability over 3000 h (1 mA cm-2- 0.5 mAh cm-2). The asymmetrical Cu//Zn cell achieved an outstanding average Coulombic efficiency (CE) of 99.6% over 1200 cycles.

12.
Angew Chem Int Ed Engl ; 63(21): e202401987, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38526053

RESUMEN

The in-depth understanding of the composition-property-performance relationship of solid electrolyte interphase (SEI) is the basis of developing a reliable SEI to stablize the Zn anode-electrolyte interface, but it remains unclear in rechargeable aqueous zinc ion batteries. Herein, a well-designed electrolyte based on 2 M Zn(CF3SO3)2-0.2 M acrylamide-0.2 M ZnSO4 is proposed. A robust polymer (polyacrylamide)-inorganic (Zn4SO4(OH)6.xH2O) hybrid SEI is in situ constructed on Zn anodes through controllable polymerization of acrylamide and coprecipitation of SO4 2- with Zn2+ and OH-. For the first time, the underlying SEI composition-property-performance relationship is systematically investigated and correlated. The results showed that the polymer-inorganic hybrid SEI, which integrates the high modulus of the inorganic component with the high toughness of the polymer ingredient, can realize high reversibility and long-term interfacial stability, even under ultrahigh areal current density and capacity (30 mA cm-2~30 mAh cm-2). The resultant Zn||NH4V4O10 cell also exhibits excellent cycling stability. This work will provide a guidance for the rational design of SEI layers in rechargeable aqueous zinc ion batteries.

13.
Phys Rev Lett ; 130(26): 266302, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37450788

RESUMEN

We report an unusual magnetoresistance that strengthens with the temperature in a dilute two-dimensional (2D) hole system in GaAs/AlGaAs quantum wells with densities p=1.98-0.99×10^{10}/cm^{2} where r_{s}, the ratio between Coulomb energy and Fermi energy, is as large as 20-30. We show that, while the system exhibits a negative parabolic magnetoresistance at low temperatures (≲0.4 K) characteristic of an interacting Fermi liquid, a positive magnetoresistance emerges unexpectedly at higher temperatures, and grows with increasing temperature even in the regime T∼E_{F}, close to the Fermi energy. This unusual positive magnetoresistance at high temperatures can be attributed to the viscous transport of 2D hole fluid in the hydrodynamic regime where holes scatter frequently with each other. These findings give insight into the collective transport of strongly interacting carriers in the r_{s}≫1 regime and new routes toward magnetoresistance at high temperatures.


Asunto(s)
Frío , Hidrodinámica , Temperatura
14.
BMC Cancer ; 23(1): 686, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37479966

RESUMEN

BACKGROUND: SETD2 protects against genomic instability via maintenance of homologous recombination repair (HRR) and mismatch repair (MMR) in neoplastic cells. However, it remains unclear whether SETD2 dysfunction is a complementary or independent factor to microsatellite instability-high (MSI-H) and tumor mutational burden-high (TMB-H) for immunocheckpoint inhibitor (ICI) treatment, and little is known regarding whether this type of dysfunction acts differently in various types of cancer. METHODS: This cohort study used multidimensional genomic data of 6726 sequencing samples from our cooperative and non-public GenePlus institute from April 1 through April 10, 2020. MSIsensor score, HRD score, RNAseq, mutational data, and corresponding clinical data were obtained from the TCGA and MSKCC cohort for seven solid tumor types. RESULTS: A total of 1021 genes underwent target panel sequencing reveal that SETD2 mutations were associated with a higher TMB. SETD2 deleterious mutation dysfunction affected ICI treatment prognosis independently of TMB-H (p < 0.01) and had a lower death hazard than TMB-H in pancancer patients (0.511 vs 0.757). Significantly higher MSI and lower homologous recombination deficiency were observed in the SETD2 deleterious mutation group. Improved survival rate was found in the MSKCC-IO cohort (P < 0.0001) and was further confirmed in our Chinese cohort. CONCLUSION: We found that SETD2 dysfunction affects ICI treatment prognosis independently of TMB-H and has a lower death hazard than TMB-H in pancancer patients. Therefore, SETD2 has the potential to serve as a candidate biomarker for ICI treatment. Additionally, SETD2 should be considered when dMMR is detected by immunohistochemistry.


Asunto(s)
Reparación del ADN , Inestabilidad de Microsatélites , Neoplasias Pancreáticas , Humanos , Pueblo Asiatico , Estudios de Cohortes , Reparación de la Incompatibilidad de ADN/genética , Reparación del ADN/genética , Inestabilidad Genómica , Inmunoterapia , Mutación , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidad , Reparación del ADN por Recombinación/genética
15.
Reprod Biomed Online ; 46(6): 1005-1016, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37085428

RESUMEN

RESEARCH QUESTION: What are the different features of the vaginal microbiome (VMB) between patients with polycystic ovary syndrome (PCOS) and healthy women? DESIGN: A cross-sectional study was conducted at a single academic university-affiliated centre. A total of 1446 participants were recruited (PCOS group, n =713, control group, n = 733). Vaginal swabs were analysed using 16S rRNA gene sequencing. The diversity and composition of the microbiome were compared between the PCOS group and the control group. Microbial interaction networks and functional prediction were investigated. RESULTS: The PCOS group had a higher alpha diversity than the control group (Shannon P = 0.03, Simpson P = 0.02), and higher intra-group variability was observed in PCOS group (P < 2.2E-16). At the genus level, the proportion of Lactobacillus decreased (85.1% versus 89.3%, false discovery rate [FDR] = 0.02), whereas the proportion of Gardnerella vaginalis and Ureaplasma increased in the PCOS group (5.1% versus 3.3%, FDR = 0.006; 1.2% versus 0.6%, FDR = 0.002, respectively). Lactobacillus acidophilus, Prevotella buccalis and G. vaginalis were identified as the main differential species. L. acidophilus was positively correlated with serum levels of anti-Müllerian hormone (AMH), and triglyceride (P = 2.01E-05, P = 0.004, respectively). P. buccalis was negatively correlated with serum levels of AMH and testosterone (P = 0.002, P = 0.003, respectively). G. vaginalis was positively correlated with serum levels of AMH, oestradiol and progesterone (P = 0.004, P = 0.005, P = 0.03, respectively). The VMB interaction network indicated that Lactobacillus crispus, Prevotella timonensis, and P. buccalis could be key drivers in the PCOS group. Overall, 55 predicted genes were found to be differentially abundant between PCOS and the control (FDRs < 0.25). CONCLUSIONS: The PCOS group had a higher diversity of vaginal microbiome and showed an enhanced level of heterogeneity. The proportion of Lactobacillus in the PCOS group decreased, whereas the proportions of Gardnerella and Ureaplasma increased. These results warrant further research that can validate the correlation between PCOS and VMB.


Asunto(s)
Microbiota , Síndrome del Ovario Poliquístico , Femenino , Humanos , Estudios Transversales , ARN Ribosómico 16S/genética , Hormona Antimülleriana
16.
BMC Gastroenterol ; 23(1): 220, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365494

RESUMEN

BACKGROUND: Limited research exists on the laboratory characteristics of coexistent primary biliary cholangitis (PBC) and Sjögren's syndrome (SS). This study aimed to investigate the laboratory risk factors for the coexistence of PBC in patients with SS. METHODS: Eighty-two patients with coexistent SS and PBC (median age 52.50 years) and 82 age- and sex-matched SS controls were retrospectively enrolled between July 2015 and July 2021. The clinical and laboratory characteristics of the two groups were compared. Laboratory risk factors for the coexistence of PBC in patients with SS were analyzed using logistic regression analysis. RESULTS: Both groups had a similar prevalence of hypertension, diabetes, thyroid disease, and interstitial lung disease. Compared with the SS group, patients in the SS + PBC group had higher levels of liver enzymes, immunoglobulins M (IgM), G2, and G3 (P < 0.05). The percentage of patients with an antinuclear antibody (ANA) titre > 1:10000 in the SS + PBC group was 56.1%, higher than that in the SS group (19.5%, P < 0.05). Additionally, cytoplasmic, centromeric, and nuclear membranous patterns of ANA and positive anti-centromere antibody (ACA) were observed more frequently in the SS + PBC group (P < 0.05). Logistic regression analysis showed that elevated IgM levels, high ANA titre, cytoplasmic pattern, and ACA were independent risk factors for PBC coexistence in SS. CONCLUSIONS: In addition to established risk factors, elevated IgM levels, positive ACA, and high ANA titre with cytoplasmic pattern provide clues to clinicians for the early screening and diagnosis of PBC in patients with SS.


Asunto(s)
Cirrosis Hepática Biliar , Síndrome de Sjögren , Humanos , Persona de Mediana Edad , Síndrome de Sjögren/complicaciones , Síndrome de Sjögren/epidemiología , Estudios Retrospectivos , Cirrosis Hepática Biliar/complicaciones , Factores de Riesgo , Inmunoglobulina M , Autoanticuerpos
17.
Gastric Cancer ; 26(6): 891-903, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37543986

RESUMEN

BACKGROUND: Gastric cancer patients responded differently to the same treatment strategy and had various prognoses for the lack of biomarkers to guide the therapy choice. METHODS: RNA data of a local gastric cancer cohort with 103 patients were processed and used to explore potential treatment guiding factors. Cluster analysis was performed by non-negative matrix factorization. The expression level of collagen-related genes was evaluated by ssGSEA named collagen score (CS). Data from TCGA, ACRG, and an immune therapy cohort were utilized to explore prognosis and efficacy. Prognostic predictive power of CS was assessed using the nomogram. RESULTS: In our study, local RNA data were processed by cluster analysis, and it was found that cluster 2 contained a worse tumor infiltration status. The GSEA result showed that collagen-related pathways were differentially activated in two clusters. In TCGA and ACRG cohorts, the CS can be used as an independent prognostic factor (TCGA OS: p = 0.018, HR = 3.5; ACRG OS: p = 0.014, HR = 4.88). An immunotherapy cohort showed that the patients with higher CS had a significantly worse ORR (p = 0.0025). The high CS group contained several cell death pathways down-regulated and contained the worse tumor microenvironment. The nomogram demonstrated the survival prediction capability of collagen score. CONCLUSION: CS was verified as an independent prognostic factor and potentially reflected the therapeutic effect of immunotherapy. The CS could provide a new way to evaluate the clinical prognosis and response information helping develop the collagen-targeted treatment.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Pronóstico , Nomogramas , ARN , Expresión Génica , Microambiente Tumoral/genética
18.
J Opt Soc Am A Opt Image Sci Vis ; 40(9): 1762-1769, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37707013

RESUMEN

The terahertz band is considered to be the next breakthrough point to revolutionize communication technology, attributed to its rich spectrum resources. The study of terahertz atmospheric transmission characteristics is important in guiding the terahertz communication window selection process. In this report, based on the equivalent medium theory, the scattering characteristics of terahertz Gaussian beams by moist media are discussed. Numerical results show that the extinction coefficient of particles is mainly affected by the humidity, and the scattering efficiency is affected by both temperature and humidity. When the temperature is over 273 K and the humidity is 0.5, the extinction efficiency shows a trend of increasing initially and decreasing afterwards. Hence, the appropriate temperature is beneficial to minimizing the attenuation coefficient.

19.
Lipids Health Dis ; 22(1): 46, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37004044

RESUMEN

BACKGROUND: Up to 85% of hepatocellular carcinoma (HCC) cases in China can be attributed to infection of hepatitis B virus (HBV). Lipid metabolism performs important function in hepatocarcinogenesis of HBV-related liver carcinoma. However, limited studies have explored the prognostic role of lipid metabolism in HBV-related HCC. This study established a prognostic model to stratify HBV-related HCC based on lipid metabolisms. METHODS: Based on The Cancer Genome Atlas HBV-related HCC samples, this study selected prognosis-related lipid metabolism genes and established a prognosis risk model by performing uni- and multi-variate Cox regression methods. The final markers used to establish the model were selected through the least absolute shrinkage and selection operator method. Analysis of functional enrichment, immune landscape, and genomic alteration was utilized to investigate the inner molecular mechanism involved in prognosis. RESULTS: The risk model independently stratified HBV-infected patients with liver cancer into two risk groups. The low-risk groups harbored longer survival times (with P < 0.05, log-rank test). TP53, LRP1B, TTN, and DNAH8 mutations and high genomic instability occurred in high-risk groups. Low-risk groups harbored higher CD8 T cell infiltration and BTLA expression. Lipid-metabolism (including "Fatty acid metabolism") and immune pathways were significantly enriched (P < 0.05) in the low-risk groups. CONCLUSIONS: This study established a robust model to stratify HBV-related HCC effectively. Analysis results decode in part the heterogeneity of HBV-related liver cancer and highlight perturbation of lipid metabolism in HBV-related HCC. This study's findings could facilitate patients' clinical classification and give hints for treatment selection.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Virus de la Hepatitis B/genética , Pronóstico , Metabolismo de los Lípidos/genética , Factores de Riesgo , Lípidos
20.
Angew Chem Int Ed Engl ; 62(41): e202311268, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37615518

RESUMEN

For zinc-ion batteries (ZIBs), the non-uniform Zn plating/stripping results in a high polarization and low Coulombic efficiency (CE), hindering the large-scale application of ZIBs. Here, inspired by biomass seaweed plants, an anionic polyelectrolyte alginate acid (SA) was used to initiate the in situ formation of the high-performance solid electrolyte interphase (SEI) layer on the Zn anode. Attribute to the anionic groups of -COO- , the affinity of Zn2+ ions to alginate acid induces a well-aligned accelerating channel for uniform plating. This SEI regulates the desolvation structure of Zn2+ and facilitates the formation of compact Zn (002) crystal planes. Even under high depth of discharge conditions (DOD), the SA-coated Zn anode still maintains a stable Zn stripping/plating behavior with a low potential difference (0.114 V). According to the classical nucleation theory, the nucleation energy for SA-coated Zn is 97 % less than that of bare Zn, resulting in a faster nucleation rate. The Zn||Cu cell assembled with the SA-coated electrode exhibits an outstanding average CE of 99.8 % over 1,400 cycles. The design is successfully demonstrated in pouch cells, where the SA-coated Zn exhibits capacity retention of 96.9 % compared to 59.1 % for bare Zn anode, even under the high cathode mass loading (>10 mg/cm2 ).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA