Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 231(Pt 1): 116042, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37142084

RESUMEN

Bio-electrochemical systems (BESs) have attracted wide attention in the field of wastewater treatment owing to their fast electron transfer rate and high performance. Unfortunately, the low electro-chemical activity of carbonaceous materials commonly used in BESs remains a bottleneck for their practical applications. Especially, for refractory pollutants remediation, the efficiency is largely limited by the cathode property in term of (bio)-electrochemical reduction of highly oxidized functional groups. Herein, a reduced graphene oxide (rGO) and polyaniline (PANI) modified electrode was fabricated via two-step electro-deposition using carbon brush as raw material. Benefiting from the modified graphene sheets and PANI nanoparticles, the rGO/PANI electrode shows highly conductive network with the electro-active surface area increased by 12 times (0.013 mF cm-2) and the charge transfer resistance decreased by 92% (0.23Ω) comparing with the unmodified one. Most importantly, the rGO/PANI electrode used as abiotic cathode achieves highly efficient azo dye removal from wastewater. The highest decolorization efficiency reaches 96 ± 0.03% within 24 h and the maximum decolorization rate is as high as 20.9 ± 1.45 g h-1·m-3. The features of improved electro-chemical activity and enhanced pollutant removal efficiency provide a new insight toward development of high performance BESs via electrode modification for practical application.


Asunto(s)
Grafito , Grafito/química , Compuestos Azo , Electrodos
3.
J Phys Condens Matter ; 24(23): 235305, 2012 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-22588085

RESUMEN

The electric transport properties of diazonium functionalized graphene (DFG) were investigated. The temperature dependence of the resistivity (ρ-T) and the Shubnikov-de Haas oscillation of the DFG revealed two-dimensional hole gas (2DHG) behaviors. The DFGs exhibited unusual weak localization behaviors in which both inelastic and chirality-breaking elastic scattering processes should be taken into account, meaning that graphene chirality was maintained. Because of the giant decrease in the diffusion coefficient, the scattering rates remained relatively low in the presence of suppression of the scattering lengths. The decreases of both the mean free path and the Fermi velocity were responsible for the suppression of the diffusion coefficient and hence the charge mobility.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA