Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Neuroimage ; 279: 120308, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37544415

RESUMEN

PURPOSE: This paper aims to investigate the impact of the channel numbers on the performance of B1+ mapping, by using the Bloch-Siegert shift (BSS) method. B1+ mapping plays a crucial role in various brain imaging protocols. THEORY AND METHODS: We simulated the radiofrequency field of the human head model in six groups of multi-channel receive coil with a range of different channel numbers. MR signals were synthesized according to the standard BSS sequence, with quantified Gaussian added. Next, we combined the signals of each channel to reconstruct the B1+ map by weighted averaging and maximum likelihood estimation strategies and evaluate the bias by relative standard deviation of each coil. RESULTS: The simulation results revealed that the accuracy of B1+ maps improved with the increasing of channel numbers, meanwhile the per channel efficiency of B1+maps accuracy gradually decrease. Both trends slowed down when the channel numbers reached 12 or above. CONCLUSION: Our finding suggests that increasing the channel numbers can improve the accuracy of B1+map. However, a diminishing efficiency of per channel accuracy improvement was overserved, indicating that the relationship between quality of B1+ map and the channel numbers is nonlinear. Based on these findings, our study provides a reference for determining channel numbers to achieve a balance of coil selection and manufacturing cost. It also provides a theoretical basis for evaluating other B1+ mapping techniques.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Encéfalo/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Ondas de Radio , Algoritmos
2.
NMR Biomed ; 33(5): e4273, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32048385

RESUMEN

Water content-based electrical properties tomography (wEPT) can retrieve electrical properties (EPs) from water content maps, thereby eliminating the need for B1 field measurement in the traditional magnetic resonance electrical properties tomography method. The wEPT is performed by conventional MR scanning, such as T1 -weighted spin-echo imaging, and thus can be directly applied to clinical settings. However, the random noise propagation involved in wEPT causes inaccuracy in EP mapping. To guarantee the EP estimates desired for clinical practice, this study statically investigates the noise-specific uncertainty of wEPT through probability density function models. We calculated the probability distribution of EP maps with different noise levels and examined the effects of scan parameters on reconstruction accuracy with various flip angles (FAs) and repetition time (TR) settings. The theoretical derivation was validated by Monte Carlo simulations and human imaging experiment at 3 T. Results showed that a serious deviation could occur in tissues with large conductivity value at a low signal-to-noise ratio and quantitatively demonstrate that such deviation could be mitigated by increased FAs or TRs. This study provided useful information for the setup of scan parameters, evaluation of accuracy of the wEPT under specific SNR levels, and promote its clinical applications.


Asunto(s)
Conductividad Eléctrica , Estadística como Asunto , Tomografía , Agua/química , Anisotropía , Sustancia Gris/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Probabilidad , Relación Señal-Ruido , Sustancia Blanca/diagnóstico por imagen
3.
Bioengineering (Basel) ; 11(7)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39061781

RESUMEN

Magnetic resonance electrical properties tomography (MR EPT) can retrieve permittivity from the B1+ magnitude. However, the accuracy of the permittivity measurement using MR EPT is still not ideal due to the low signal-to-noise ratio (SNR) of B1+ magnitude. In this study, the probability density function (PDF)-based channel-combination Bloch-Siegert (BSS) method was firstly introduced to MR EPT for improving the accuracy of the permittivity measurement. MRI experiments were performed using a 3T scanner with an eight-channel receiver coil. The homogeneous water phantom was scanned for assessing the spatial distribution of B1+ magnitude obtained from the PDF-based channel-combination BSS method. Gadolinium (Gd) phantom and rats were scanned for assessing the feasibility of the PDF-based channel-combination BSS method in MR EPT. The Helmholtz-based EPT reconstruction algorithm was selected. For quantitative comparison, the permittivity measured by the open-ended coaxial probe method was considered as the ground-truth value. The accuracy of the permittivity measurement was estimated by the relative error between the reconstructed value and the ground-truth value. The reconstructed relative permittivity of Gd phantom was 52.413, while that of rat leg muscle was 54.053. The ground-truth values of relative permittivity of Gd phantom and rat leg muscle were 78.86 and 49.04, respectively. The relative error of average permittivity was 33.53% for Gd and 10.22% for rat leg muscle. The results indicated the high accuracy of the permittivity measurement using the PDF-based channel-combination BSS method in MR EPT. This improvement may promote the clinical application of MR EPT technology, such as in the early diagnosis of cancers.

4.
Huan Jing Ke Xue ; 45(7): 3919-3929, 2024 Jul 08.
Artículo en Zh | MEDLINE | ID: mdl-39022940

RESUMEN

Organophosphates (OPEs) are widely used as flame retardants and additives and thus are commonly detected in the environment. In order to explore their environmental behavior, the concentrations of 13 OPEs in the surface water and sediment of Dongting Lake were analyzed using UPLC-MS/MS. The results showed that 11 OPEs were detected, with detection frequencies of 5.26%-100% and 58.3%-100%, and the concentrations of OPEs were 2.06-2 028 ng·L-1 and 19.6-2 232 ng·g-1 in water and sediment, respectively. Overall, contamination concentrations were ranked in descending order as follows: inflowing rivers, lake area, and outlet, whereas the spatial distribution of concentrations in sediment was inversely proportional to hydrodynamics. The concentration of OPEs in Dongting Lake was at a high level compared with that of domestic and foreign lakes. Among the detected 11 OPEs, tri-iso-butyl phosphate (TnBP) and (TiBP) were dominant in water, accounting for 52.3% and 22.4% of ∑OPEs, respectively. TPhP was the dominant OPEs in sediment, accounting for 31.2% of ∑OPEs. The correlation and principal component analysis indicated that OPEs pollution in Dongting Lake was mainly affected by industrial production emissions, fishery aquaculture, and atmospheric deposition. The assessment results of the risk entropy showed that most of the detected OPEs in water had relatively low ecological risks, whereas the ecological risk of 2-ethylhexyl diphenyl phosphate (EHDPP) at some sampling points requires further attention.

5.
Quant Imaging Med Surg ; 14(7): 4763-4778, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39022232

RESUMEN

Background: Early neurologic deterioration occurs in up to one-third of patients with acute ischemic stroke (IS), often leading to poor functional outcomes. At present, few studies have applied amide proton transfer (APT) imaging to the evaluation of early neurological deterioration (END). This study analyzed the value of computed tomography perfusion (CTP) combined with multimodal magnetic resonance imaging (MRI) in patients with acute IS with END. Methods: This retrospective study included patients with acute IS who were admitted to the neurology inpatient department in a tertiary hospital from October 2021 to June 2023. Patients with acute IS underwent CTP within 24 hours of stroke onset and MRI [arterial spin labeling (ASL), susceptibility-weighted imaging (SWI), and APT] within 7 days. END was defined as an elevation of ≥2 points on the National Institute of Health Stroke Scale (NIHSS) within 7 days of stroke onset. Univariable and multivariable analyses were used to compare clinical and imaging biomarkers in patients with acute IS with and without END. The performance of potential biomarkers in distinguishing between the two groups was evaluated using receiver operating characteristic (ROC) curve analysis. Results: Among the 70 patients with acute IS, 20 (29%) had END. After conducting univariable analysis, variables were selected for entry into a binary logistic regression analysis based on our univariable analysis results, previous research findings, clinical experience, and methodological standards. The results indicated that relative cerebral blood volume (CBV) on CTP, relative cerebral blood flow (CBF) on ASL, and relative signal intensity on amide proton transfer-weighted (APTw) imaging were independent risk factors for END. The areas under the ROC curves for these risk factors were 0.710 [95% confidence interval (CI): 0.559-0.861, P=0.006], 0.839 (95% CI: 0.744-0.933, P<0.001), and 0.804 (95% CI: 0.676-0.932, P<0.001), respectively. The combined area under the curve (AUC), sensitivity, and specificity of the four indices (0.941, 100%, and 78%, respectively) were higher than those of the four indices alone. Conclusions: CTP combined with multi-modal MRI better evaluated hemodynamics, tissue metabolism, and other relevant patient information, providing an objective basis for the clinical assessment of patients with acute IS with END and facilitating the development of accurate and personalized treatment plans.

6.
J Pers Med ; 13(2)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36836482

RESUMEN

(1) Background: The objective of this study was to determine whether arterial spin labeling (ASL), amide proton transfer (APT), or their combination could distinguish between patients with a low and high modified Rankin Scale (mRS) and forecast the effectiveness of the therapy; (2) Methods: Fifty-eight patients with subacute phase ischemic stroke were included in this study. Based on cerebral blood flow (CBF) and asymmetry magnetic transfer ratio (MTRasym) images, histogram analysis was performed on the ischemic area to acquire imaging biomarkers, and the contralateral area was used as a control. Imaging biomarkers were compared between the low (mRS 0-2) and high (mRS 3-6) mRS score groups using the Mann-Whitney U test. Receiver operating characteristic (ROC) curve analysis was used to evaluate the performance of the potential biomarkers in differentiating between the two groups; (3) Results: The rAPT 50th had an area under the ROC curve (AUC) of 0.728, with a sensitivity of 91.67% and a specificity of 61.76% for differentiating between patients with low and high mRS scores. Moreover, the AUC, sensitivity, and specificity of the rASL max were 0.926, 100%, and 82.4%, respectively. Combining the parameters with logistic regression could further improve the performance in predicting prognosis, leading to an AUC of 0.968, a sensitivity of 100%, and a specificity of 91.2%; (4) Conclusions: The combination of APT and ASL may be a potential imaging biomarker to reflect the effectiveness of thrombolytic therapy for stroke patients, assisting in guiding treatment approaches and identifying high-risk patients such as those with severe disability, paralysis, and cognitive impairment.

7.
Magn Reson Imaging ; 78: 25-34, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33450296

RESUMEN

Water-content based electrical properties tomography (wEPT) can retrieve electrical properties (EPs) from water-content maps. B1+ field information is not involved in the traditional magnetic resonance electrical properties tomography approach. wEPT can be performed through conventional MR scanning, such as T1-weighted spin-echo imaging, which provides convenient access to multiple clinical applications. However, the inhomogeneous radiofrequency (RF) field induced by RF coils would cause inaccuracy in wEPT reconstructions during MR scanning. We conducted a detailed investigation to evaluate the effect of inhomogeneous RF field on wEPT reconstructions to guarantee that EP mapping is desired for clinical practice. Two important considerations are involved, namely, multiple typical coil configurations and various flip angles (FAs). We proposed a correction scheme with actual FA mapping to calibrate the RF inhomogeneity and finally validated it by using human imaging at 3 T. This study illustrates a detailed evaluation for wEPT under imperfect RF homogeneity and further provides a feasible correction procedure to mitigate it. The profound knowledge of wEPT provided in our work will benefit its performance in clinical applications.


Asunto(s)
Electricidad , Imagen por Resonancia Magnética/métodos , Ondas de Radio , Tomografía , Agua/metabolismo , Calibración , Humanos , Fantasmas de Imagen
8.
Magn Reson Imaging ; 65: 1-7, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31670236

RESUMEN

PURPOSE: The aim of this study was to propose a channel combination method for |B1+| mapping methods using phase difference to reconstruct |B1+| map. THEORY AND METHODS: Phase-based |B1+| mapping methods commonly consider the phase difference of two scans to measure |B1+|. Multiple receiver coils acquire a number of images and the phase difference at each channel is theoretically the same in the absence of noise. Affected by noise, phase difference is approximately governed by Gaussian distribution. Considering data from all channels as samples, estimation can be achieved by maximum likelihood method. With this method, all phase differences at each channel are combined into one. In this study, the proposed method is applied with Bloch-Siegert shift |B1+| mapping method. Simulations are performed to illustrate the phase difference distribution and demonstrate the feasibility and facility of the proposed method. Phantom and vivo experiments are carried out at 1.5 T scanner equipped with 8-channel receiver coil. In all experiments, the proposed method is compared with weighted averaging (WA) method. RESULTS: Simulations revealed appropriateness of approximating the distribution of phase difference to Gaussian distribution. Compared with WA method, the proposed method reduces errors of |B1+| calculation. Phantom and vivo experiments provide further validation. CONCLUSION: Considering phase noise distribution, the proposed method achieves channel combination by finding the estimation from data acquired by multiple receivers coil. The proposed method reduces |B1+| reconstruction errors caused by noise.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Procesamiento de Señales Asistido por Computador , Algoritmos , Simulación por Computador , Humanos , Masculino , Distribución Normal , Fantasmas de Imagen , Valores de Referencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA