Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 465(7294): 106-9, 2010 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-20410883

RESUMEN

DNA methylation is an important epigenetic mark in many eukaryotes. In plants, 24-nucleotide small interfering RNAs (siRNAs) bound to the effector protein, Argonaute 4 (AGO4), can direct de novo DNA methylation by the methyltransferase DRM2 (refs 2, 4-6). Here we report a new regulator of RNA-directed DNA methylation (RdDM) in Arabidopsis: RDM1. Loss-of-function mutations in the RDM1 gene impair the accumulation of 24-nucleotide siRNAs, reduce DNA methylation, and release transcriptional gene silencing at RdDM target loci. RDM1 encodes a small protein that seems to bind single-stranded methyl DNA, and associates and co-localizes with RNA polymerase II (Pol II, also known as NRPB), AGO4 and DRM2 in the nucleus. Our results indicate that RDM1 is a component of the RdDM effector complex and may have a role in linking siRNA production with pre-existing or de novo cytosine methylation. Our results also indicate that, although RDM1 and Pol V (also known as NRPE) may function together at some RdDM target sites in the peri-nucleolar siRNA processing centre, Pol II rather than Pol V is associated with the RdDM effector complex at target sites in the nucleoplasm.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , ARN Polimerasa II/metabolismo , ARN de Planta/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Argonautas , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen/fisiología , Metiltransferasas/metabolismo , Mutación
2.
PLoS Pathog ; 6(1): e1000729, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20084269

RESUMEN

RNA silencing is a highly conserved pathway in the network of interconnected defense responses that are activated during viral infection. As a counter-defense, many plant viruses encode proteins that block silencing, often also interfering with endogenous small RNA pathways. However, the mechanism of action of viral suppressors is not well understood and the role of host factors in the process is just beginning to emerge. Here we report that the ethylene-inducible transcription factor RAV2 is required for suppression of RNA silencing by two unrelated plant viral proteins, potyvirus HC-Pro and carmovirus P38. Using a hairpin transgene silencing system, we find that both viral suppressors require RAV2 to block the activity of primary siRNAs, whereas suppression of transitive silencing is RAV2-independent. RAV2 is also required for many HC-Pro-mediated morphological anomalies in transgenic plants, but not for the associated defects in the microRNA pathway. Whole genome tiling microarray experiments demonstrate that expression of genes known to be required for silencing is unchanged in HC-Pro plants, whereas a striking number of genes involved in other biotic and abiotic stress responses are induced, many in a RAV2-dependent manner. Among the genes that require RAV2 for induction by HC-Pro are FRY1 and CML38, genes implicated as endogenous suppressors of silencing. These findings raise the intriguing possibility that HC-Pro-suppression of silencing is not caused by decreased expression of genes that are required for silencing, but instead, by induction of stress and defense responses, some components of which interfere with antiviral silencing. Furthermore, the observation that two unrelated viral suppressors require the activity of the same factor to block silencing suggests that RAV2 represents a control point that can be readily subverted by viruses to block antiviral silencing.


Asunto(s)
Proteínas de Arabidopsis/genética , Cisteína Endopeptidasas/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas/inmunología , Virus de Plantas/inmunología , Interferencia de ARN/fisiología , Proteínas Virales/genética , Proteínas de Arabidopsis/inmunología , Northern Blotting , Carmovirus/inmunología , Proteínas de Unión al ADN/inmunología , Genes de Plantas , Inmunoprecipitación , Análisis de Secuencia por Matrices de Oligonucleótidos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Virus de Plantas/genética , Plantas/genética , Plantas/inmunología , Plantas/virología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transgenes
3.
Plant J ; 64(4): 699-704, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21070421

RESUMEN

The utility of many T-DNA insertion mutant lines of Arabidopsis is compromised by their propensity to trigger transcriptional silencing of transgenes expressed from the CaMV 35S promoter. To try to circumvent this problem, we characterized the genetic requirements for maintenance of 35S promoter homology-dependent transcriptional gene silencing induced by the dcl3-1 (SALK_005512) T-DNA insertion mutant line. Surprisingly, even though DCL3 and RDR2 are known components of the siRNA-dependent transcriptional gene silencing pathway, transcriptional gene silencing of a 35S promoter-driven GUS hairpin transgene did occur in plants homozygous for the dcl3-1 T-DNA insertion and was unaffected by loss of function of RDR2. However, the transcriptional gene silencing was alleviated in dcl2 dcl3 dcl4 triple mutant plants and also by mutations in AGO4, NRPD2, HEN1 and MOM1. Thus, some T-DNA insertion mutant lines induce 35S promoter homology-dependent transcriptional silencing that requires neither DCL3 nor RDR2, but involves other genes known to function in siRNA-dependent transcriptional silencing. Consistent with these results, we detected 35S promoter siRNAs in dcl3-1 SALK line plants, suggesting that the 35S promoter homology-dependent silencing induced by some T-DNA insertion mutant lines is siRNA-mediated.


Asunto(s)
Arabidopsis/genética , Silenciador del Gen , Regiones Promotoras Genéticas , ARN Interferente Pequeño , Proteínas de Arabidopsis/genética , Caulimovirus/genética , ADN Bacteriano , Mutagénesis Insercional , Mutación , ARN Polimerasa Dependiente del ARN/genética , Ribonucleasa III/genética , Transgenes
4.
Front Plant Sci ; 12: 712179, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745155

RESUMEN

Plant biotechnology traits provide a means to increase crop yields, manage weeds and pests, and sustainably contribute to addressing the needs of a growing population. One of the key challenges in developing new traits for plant biotechnology is the availability of expression elements for efficacious and predictable transgene regulation. Recent advances in genomics, transcriptomics, and computational tools have enabled the generation of new expression elements in a variety of model organisms. In this study, new expression element sequences were computationally generated for use in crops, starting from native Arabidopsis and maize sequences. These elements include promoters, 5' untranslated regions (5' UTRs), introns, and 3' UTRs. The expression elements were demonstrated to drive effective transgene expression in stably transformed soybean plants across multiple tissues types and developmental stages. The expressed transcripts were characterized to demonstrate the molecular function of these expression elements. The data show that the promoters precisely initiate transcripts, the introns are effectively spliced, and the 3' UTRs enable predictable processing of transcript 3' ends. Overall, our results indicate that these new expression elements can recapitulate key functional properties of natural sequences and provide opportunities for optimizing the expression of genes in future plant biotechnology traits.

5.
Plant J ; 40(3): 376-85, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15469495

RESUMEN

From the characterization of the recessive resistance gene, sbm1, in pea we have identified the eukaryotic translation initiation factor, eIF4E, as a susceptibility factor required for infection with the Potyvirus, Pea seed-borne mosaic virus. A functional analysis of the mode of action of the product of the dominant allele revealed a novel function for eIF4E in its support for virus movement from cell-to-cell, in addition to its probable support for viral RNA translation, and hence replication. Different resistance specificities in two independent pea lines were explained by different mutations in eIF4E. On the modelled structure of eIF4E the coding changes were in both cases lying in and around the structural pocket involved in binding the 5'-m7G cap of eukaryotic mRNAs. Protein expression and cap-binding analysis showed that eIF4E encoded by a resistant plant could not bind to m7G-Sepharose, a result which may point to functional redundancy between eIF4E and the paralogous eIF(iso)4E in resistant peas. These observations, together with related findings for other potyvirus recessive resistances, provide a more complete picture of the potyvirus life cycle.


Asunto(s)
Factor 4E Eucariótico de Iniciación/fisiología , Pisum sativum/fisiología , Proteínas de Plantas/fisiología , Potyvirus/fisiología , Alelos , Secuencia de Aminoácidos , Factor 4E Eucariótico de Iniciación/química , Factor 4E Eucariótico de Iniciación/genética , Regulación de la Expresión Génica de las Plantas , Regulación Viral de la Expresión Génica , Genes Recesivos , Inmunidad Innata/genética , Datos de Secuencia Molecular , Pisum sativum/genética , Pisum sativum/virología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Conformación Proteica , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA