Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Curr Microbiol ; 78(7): 2648-2659, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33990869

RESUMEN

Baird's tapir (Tapirus bairdii) is the largest native terrestrial mammal in the Neotropics, which is endangered primarily as a consequence of habitat loss and overhunting. Baird's tapir is predominantly nocturnal and exists at low densities which complicates field studies. Baird's tapir is a large-bodied herbivore that plays a key role in maintaining healthy tropical forests through seed dispersal in its feces. Studies of gut microbiome are essential and valuable to assess the health status of the host and the interaction with the environment. In this study, we collected fresh fecal samples of T. bairdii to analyze its gut microbiome during the rainy and dry seasons in the Calakmul region, which is a critical rainforest conservation area in Mexico. The results of a high-throughput 16S rDNA gene sequencing approach suggest that the fecal microbiome of Baird's tapir has no significant differences in composition among seasons. The most common phyla were Firmicutes, Bacteroidetes, Proteobacteria, Kiritimatiellaeota, and Spirochaetes. This study suggests that the stability of the fecal microbiome is related to similar feeding strategies throughout the year, and emphasizes the value of tapir in seed dispersal (and associated microbes) to the well-conserved forests of the Greater Calakmul region as biodiversity hotspots for conservation.


Asunto(s)
Microbiota , Perisodáctilos , Animales , Heces , Bosques , México
2.
PLoS Negl Trop Dis ; 18(7): e0012286, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38959260

RESUMEN

BACKGROUND: Habitat modification and land use changes impact ecological interactions and alter the relationships between humans and nature. Mexico has experienced significant landscape modifications at the local and regional scales, with negative effects on forest cover and biological biodiversity, especially in the Yucatan peninsula in southeastern Mexico. Given the close relationship between landscape modification and the transmission of zoonotic and vector-borne diseases, it is essential to develop criteria for identifying priority zoonoses in the south of the country. METHODOLOGY/PRINCIPAL FINDINGS: We reviewed 165 published studies on zoonotic and vector-borne diseases in the region (2015-2024). We identified the most frequent vectors, reservoirs, and hosts, the most prevalent infections, and the factors associated with transmission risk and the anthropogenic landscape modification in urban, rural, ecotone, and sylvatic habitats. The most relevant pathogens of zoonotic risk included Trypanosoma cruzi, arboviruses, Leishmania, Rickettsia, Leptospira, and Toxoplasma gondii. Trypanosoma cruzi was the vector-borne agent with the largest number of infected vertebrate species across habitats, while Leishmania and arboviruses were the ones that affected the greatest number of people. Dogs, cats, backyard animals, and their hematophagous ectoparasites are the most likely species maintaining the transmission cycles in human settlements, while rodents, opossums, bats, and other synanthropic animals facilitate connection and transmission cycles between forested habitats with human-modified landscapes. Pathogens displayed different prevalences between the landscapes, T. cruzi, arbovirus, and Leptospira infections were the most prevalent in urban and rural settlements, whereas Leishmania and Rickettsia had similar prevalence across habitats, likely due to the diversity and abundance of the infected vectors involved. The prevalence of T. gondii and Leptospira spp. may reflect poor hygiene conditions. Additionally, results suggest that prevalence of zoonotic and vector-borne diseases is higher in deforested areas and agricultural aggregates, and in sites with precarious health and infrastructure services. CONCLUSIONS: Some hosts, vectors, and transmission trends of zoonotic and vector-borne diseases in the YP are well known but others remain poorly recognized. It is imperative to reinforce practices aimed at increasing the knowledge, monitoring, prevention, and control of these diseases at the regional level. We also emphasize the need to perform studies on a larger spatio-temporal scale under the socio-ecosystem perspective, to better elucidate the interactions between pathogens, hosts, vectors, environment, and sociocultural and economic aspects in this and many other tropical regions.

3.
PLoS One ; 18(6): e0281385, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37384745

RESUMEN

The gut microbiota-brain axis is a complex communication network essential for host health. Any long-term disruption can affect higher cognitive functions, or it may even result in several chronic neurological diseases. The type and diversity of nutrients an individual consumes are essential for developing the gut microbiota (GM) and the brain. Hence, dietary patterns might influence networks communication of this axis, especially at the age that both systems go through maturation processes. By implementing Mutual Information and Minimum Spanning Tree (MST); we proposed a novel combination of Machine Learning and Network Theory techniques to study the effect of animal protein and lipid intake on the connectivity of GM and brain cortex activity (BCA) networks in children from 5-to 10 years old from an indigenous community in the southwest of México. Socio-ecological conditions in this nonwestern lifestyle community are very homogeneous among its inhabitants but it shows high individual heterogeneity in the consumption of animal products. Results suggest that MST, the critical backbone of information flow, diminishes under low protein and lipid intake. So, under these nonwestern regimens, deficient animal protein and lipid consumption diets may significantly affect the GM-BCA connectivity in crucial development stages. Finally, MST offers us a metric that unifies biological systems of different nature to evaluate the change in their complexity in the face of environmental pressures or disturbances. Effect of Diet on gut microbiota and brain networks connectivity.


Asunto(s)
Microbioma Gastrointestinal , Afecciones Crónicas Múltiples , Animales , Humanos , México , Encéfalo , Pueblos Indígenas , Lípidos
4.
Microbiologyopen ; 9(6): 1113-1127, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32181589

RESUMEN

In this paper, we explore how two discrete and geographically separated populations of the lesser long-nosed bat (Leptonycteris yerbabuenae)-one in central and the other in the Pacific region of Mexico-differ in their fecal microbiota composition. Considering the microbiota-host as a unity, in which extrinsic (as food availability and geography) or intrinsic factors (as physiology) play an important role in the microbiota composition, we would expect differentiation in the microbiota of two geographically separated populations. The Amplicon Sequences Variants (ASVs) of the V4 region of the 16s rRNA gene from 68 individuals were analyzed using alpha and beta diversity metrics. We obtained a total of 11 566 (ASVs). The bacterial communities in the Central and Pacific populations had a diversity of 6,939 and 4,088 ASVs, respectively, sharing a core microbiota of 539 ASVs accounting for 75% of the relative abundance, suggesting stability over evolutionary time. The Weighted UniFrac metrics tested by a PERMANOVA showed that lactating and pregnant females had significant beta diversity differences in the two populations compared with other reproductive stages. This could be a consequence of the increased energy requirements of these physiological stages, more than the variation due to geographical separation. In contrast, a positive correlation of the observed ASVs of fecal microbiota with the observed ASVs of plastids related to the diet was observed in the juveniles and adults, suggesting that in these physiological stages an extrinsic factor as the diet shapes the microbiota composition. The results provide a baseline for future studies of the microbiome in these two wild populations of the lesser long-nosed bat, the main pollinator of the Agaves from which the beverages tequila and mezcal are made.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Quirópteros/microbiología , Microbioma Gastrointestinal/genética , Aislamiento Social , Animales , Bacterias/aislamiento & purificación , ADN Bacteriano/genética , Heces/microbiología , Femenino , Variación Genética/genética , Geografía , Secuenciación de Nucleótidos de Alto Rendimiento , Lactancia , México , Embarazo , ARN Ribosómico 16S/genética
5.
Microorganisms ; 8(10)2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081076

RESUMEN

The human gut microbiome is an important component that defines host health. Childhood is a particularly important period for the establishment and development of gut microbiota (GM). We sequenced the 16S rRNA gene from fecal samples of children between 5 and 10 years old, in two Mexican communities with contrasting lifestyles, i.e., "Westernized" (México City, n = 13) and "non-Westernized" (Me'phaa indigenous group, n = 29), in order to characterize and compare their GM. The main differences between these two communities were in bacteria associated with different types of diets (high animal protein and refined sugars vs. high fiber food, respectively). In addition, the GM of Me'phaa children showed higher total diversity and the presence of exclusive phyla, such as Deinococcus-Thermus, Chloroflexi, Elusimicrobia, Acidobacteria, and Fibrobacteres. In contrast, the children from México City showed less diversity and the presence of Saccharibacteria phylum, which was associated with the degradation of sugar compounds and was not present in the samples from Me'phaa children. This comparison provided further knowledge of the selective pressures affecting microbial ecosystemic composition over the course of human evolution and the potential consequences of pathophysiological states correlated with Westernization lifestyles.

6.
Sci Rep ; 10(1): 3680, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32111922

RESUMEN

If you think you are in control of your behavior, think again. Evidence suggests that behavioral modifications, as development and persistence of depression, maybe the consequence of a complex network of communication between macro and micro-organisms capable of modifying the physiological axis of the host. Some parasites cause significant nutritional deficiencies for the host and impair the effectiveness of cognitive processes such as memory, teaching or non-verbal intelligence. Bacterial communities mediate the establishment of parasites and vice versa but this complexity approach remains little explored. We study the gut microbiota-parasite interactions using novel techniques of network analysis using data of individuals from two indigenous communities in Guerrero, Mexico. Our results suggest that Ascaris lumbricoides induce a gut microbiota perturbation affecting its network properties and also subnetworks of key species related to depression, translating in a loss of emergence. Studying these network properties changes is particularly important because recent research has shown that human health is characterized by a dynamic trade-off between emergence and self-organization, called criticality. Emergence allows the systems to generate novel information meanwhile self-organization is related to the system's order and structure. In this way, the loss of emergence means a depart from criticality and ultimately loss of health.


Asunto(s)
Ascariasis , Ascaris lumbricoides , Depresión , Microbioma Gastrointestinal , Adolescente , Adulto , Animales , Ascariasis/epidemiología , Ascariasis/microbiología , Niño , Preescolar , Depresión/epidemiología , Depresión/microbiología , Depresión/parasitología , Femenino , Humanos , Incidencia , Masculino , México , Persona de Mediana Edad
7.
PLoS One ; 14(12): e0226239, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31841551

RESUMEN

Bacteria and other types of microbes interact with their hosts in several ways, including metabolic pathways, development, and complex behavioral processes such as mate recognition. During the mating season, adult males of the lesser long-nosed agave pollinator bat Leptonycteris yerbabuenae (Phyllostomidae: Glossophaginae) develop a structure called the dorsal patch, which is located in the interscapular region and may play a role in kin recognition and mate selection. Using high-throughput sequencing of the V4 region of the 16S rRNA gene, we identified a total of 2,847 microbial phylotypes in the dorsal patches of eleven specimens. Twenty-six phylotypes were shared among all the patches, accounting for 30 to 75% of their relative abundance. These shared bacteria are distributed among 13 families, 10 orders, 6 classes and 3 phyla. Two of these common bacterial components of the dorsal patch are Lactococcus and Streptococcus. Some of them-Helcococcus, Aggregatibacter, Enterococcus, and Corynebacteriaceae-include bacteria with pathogenic potential. Half of the shared phylotypes belong to Gallicola, Anaerococcus, Peptoniphilus, Proteus, Staphylococcus, Clostridium, and Peptostreptococcus and specialize in fatty acid production through fermentative processes. This work lays the basis for future symbiotic microbe studies focused on communication and reproduction strategies in wildlife.


Asunto(s)
Quirópteros/fisiología , Microbiota/fisiología , Conducta Sexual Animal/fisiología , Animales , Dorso/microbiología , Bacterias/genética , Bacterias/aislamiento & purificación , Biodiversidad , Quirópteros/microbiología , ADN Bacteriano/análisis , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , México , Microbiota/genética , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética , Reproducción/fisiología
8.
PLoS One ; 14(7): e0219982, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31318946

RESUMEN

In this study we analyzed the microbiota composition of fecal samples from the lesser-long nosed bat Leptonycteris yerbabuenae in different reproductive stages (juveniles and adult bats of both sexes as well as pregnant and lactating females). The V4 region of the 16s rRNA gene from 33 individuals was analyzed using alpha and beta diversity metrics. We found that microbiota diversity (expressed in Amplicon Sequence Variants) is higher in pregnant and lactating females. The microbiota of the juveniles and non-reproductive adults was dominated by Gammaproteobacteria and Firmicutes. Reproductive females had a much more diverse microbiota, with a significant increase in phyla such as Bacteroidetes and Alphaproteobacteria. There was no difference in fecal microbiota diversity between pregnant and lactating females and juveniles and non-reproductive adults. Results suggest that differences in microbiota diversity are related to reproduction. We infer that males maintain stable microbiota composition because they do not undergo the large physiological changes that females do during reproduction and maintain a more specialized diet throughout all life stages.


Asunto(s)
Quirópteros/fisiología , Heces/microbiología , Microbioma Gastrointestinal , Reproducción , Animales , Femenino , Geografía , Masculino , Metagenoma , Metagenómica/métodos , Embarazo , ARN Ribosómico 16S/genética
9.
Front Microbiol ; 6: 447, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26042099

RESUMEN

The members of the Phyllostomidae, the New-World leaf-nosed family of bats, show a remarkable evolutionary diversification of dietary strategies including insectivory, as the ancestral trait, followed by appearance of carnivory and plant-based diets such as nectarivory and frugivory. Here we explore the microbiome composition of different feeding specialists: insectivore Macrotus waterhousii, sanguivore Desmodus rotundus, nectarivores Leptonycteris yerbabuenae and Glossophaga soricina, and frugivores Carollia perspicillata and Artibeus jamaicensis. The V4 region of the 16S rRNA gene from three intestinal regions of three individuals per species was amplified and community composition and structure was analyzed with α and ß diversity metrics. Bats with plant-based diets had low diversity microbiomes, whereas the sanguivore D. rotundus and insectivore M. waterhousii had the most diverse microbiomes. There were no significant differences in microbiome composition between different intestine regions within each individual. Plant-based feeders showed less specificity in their microbiome compositions, whereas animal-based specialists, although more diverse overall, showed a more clustered arrangement of their intestinal bacterial components. The main characteristics defining microbiome composition in phyllostomids were species and feeding strategy. This study shows how differences in feeding strategies contributed to the development of different intestinal microbiomes in Phyllostomidae.

10.
Rev. invest. clín ; 45(2): 149-53, mar.-abr. 1993. tab
Artículo en Español | LILACS | ID: lil-121184

RESUMEN

Se estudió la frecuencia de los polimorfismos de la heterocromatina constitutiva con bandas C de los cromosomas 1, 9 y 16 en dos poblaciones de mestizos mexicanos. Para la clasificación del tamaño de la heterocromatina se utilizó un método semicuantitativo que mostró se reproducible, simple y útil para ser usado rutinariamente. Se comparan nuestros hallazgos con los observados en otras poblaciones.


Asunto(s)
Humanos , Masculino , Cromosomas Humanos Par 16/ultraestructura , Cromosomas Humanos Par 1/ultraestructura , Cromosomas Humanos Par 9/ultraestructura , Heterocromatina/ultraestructura , Polimorfismo Genético/genética , Grupos Raciales/genética , México/etnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA