Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Glycoconj J ; 35(2): 191-203, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29388006

RESUMEN

Dendritic cells (DCs) play crucial roles in innate and adaptive immune response, for which reason targeting antigen to these cells is an important strategy for improvement of vaccine development. To this end, we explored recognition of DCs lectins by glycans. For selection of the glycan "vector", a library of 229 fluorescent glycoprobes was employed to assess interaction with the CD14low/-CD16+CD83+ blood mononuclear cell population containing the DCs known for their importance in antigen presentation to T-lymphocytes. It was found that: 1) the glycan-binding profiles of this CD14low/-CD16+CD83+ subpopulation were similar but not identical to DCs of monocyte origin (moDCs); 2) the highest percentage of probe-positive cells in this CD14 low/-CD16+CD83+ subpopulation was observed for GalNAcα1-2Galß (Adi), (Neu5Acα)3 and three mannose-reach glycans; 3) subpopulation of CD14low/-CD16+ cells preferentially bound 4'-O-Su-LacdiNAc. Considering the published data on specificity of DCs binding, the glycans showing particular selectivity for the CD14 low/-CD16+CD83+ cells are likely interacting with macrophage galactose binding lectin (MGL), siglec-7 and dectin-2. In contrast, DC-SIGN is not apparently involved, even in case of mannose-rich glycans. Taking into consideration potential in vivo competition between glycan "vectors" and glycans within glycocalyx, attempting to target vaccine to DCs glycan-binding receptors should focus on Adi and (Neu5Acα)3 as the most promising vectors.


Asunto(s)
Células Dendríticas/metabolismo , Lectinas/metabolismo , Monocitos/metabolismo , Polisacáridos/metabolismo , Humanos , Lectinas/química , Unión Proteica
2.
J Obes ; 2023: 7392513, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37901192

RESUMEN

Obesity develops largely due to genetic factors, with the genetic polymorphism of lipid metabolism enzymes being of particular importance. However, it is still unclear how the genetic variants of one of the key enzymes in lipid transport, lipoprotein lipase (LPL), are associated with the endocrine function of mesenchymal tissues in obesity. The current study was aimed at the investigation of the LPL rs328 gene variant association with adipokines and myokines levels, as well as lipid metabolism indices in the blood of children and adolescents of both genders with obesity. We found that LPL polymorphism rs328 is not characterized by the differences in the levels of hormones, adipokines, and myokines and in the blood of healthy children and adolescents; however, it significantly affects these indices during obesity in gender-dependent manner. The shifts in hormones, adipokines, and myokines manifest mostly in the obese individuals with Ser447Ser genotype rather than with 447Ter genotype. Obese boys homozygous for Ser447Ser have more elevated leptin levels than girls. They also demonstrate lower adiponectin, apelin, prolactin, and osteocrine levels than those in obese girls with the same genotype. The gender-based differences are less pronounced in individuals with 447Ter genotype than in the homozygotes for 447Ser. Thus, we conclude that the polymorphism rs328 of the lipoprotein lipase gene is accompanied by the changes in hormones, adipokines, and myokines levels in the blood of children and adolescents with obesity in gender-dependent manner.


Asunto(s)
Lipoproteína Lipasa , Obesidad Infantil , Adolescente , Niño , Femenino , Humanos , Masculino , Adipoquinas/sangre , Adiponectina , Genotipo , Lipoproteína Lipasa/genética , Obesidad Infantil/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA