Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Pharmacol Res ; 202: 107104, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38364957

RESUMEN

Here we present an account on the history of pharmacology in Spain. Pharmacology as an independent science in Europe began with the creation of university chairs. Of particular relevance was the appointment in 1872 of Osswald Shmiedeberg as chairman of an Institute of Pharmacology at the University of Strassbourg, Germany. Teófilo Hernando pioneered in Spain the new emerging pharmacology at the beginning of the XX Century. He made a posdoctoral stay in the laboratory of Schmiedeberg, working on digitalis. In 1912 he won the chair of "Materia Médica y Arte de Recetar" at "Universidad Central of Madrid" (today, "Universidad Complutense de Madrid", UCM). He soon decided to transform such subject to the emerging modern pharmacology, with the teaching of experimental pharmacology in the third course of medical studies and clinical therapeutics (today clinical pharmacology) in the sixth course. This was the status of pharmacology in 1920, supporting the view that Hernando was a pioneer of clinical pharmacology. However, the Spanish Civil War and the II Word War interropted this division of preclinical and clinical pharmacology; only in the 1980's was clinical pharmacolgy partially developed in Spain. From a scientific point of view, Hernando directly trained various young pharmacologists that extended the new science to various Spanish universities. Some of his direct disciples were Benigno Lorenzo Velázquez, Francisco García Valdecasas, Rafael Méndez, Tomás Alday, Gabriel Sánchez de la Cuesta, Dámaso Gutiérrez or Ramón P é rez-Cirera. One of the central research subject was the analysis of the effects of digitalis on the cat and frog heart. In the initiation of the 1970 s pharmacologists trained by those Hernando's students grew throughout various universities and the "Consejo Superior de Investigaciones Científicas" (CSIC). And hence, in 1972 the "Sociedad Española de Farmacología" (SEF) emerged. Later on, in the 1990's the "Sociedad Española de Farmacología Clínica (SEFC) also emerged. The relationship between the two societies is still weak. Out of the vast scope of the pharmacological sciences, Spanish pharmacologists have made relevant contributions in two areas namely, neuropsychopharmacology and cardiovacular pharmacology. Nonetheless, in other areas such as smooth muscle, gastroenterology, pharmacogenetics and hepatic toxicity, Spanish pharmacologists have also made relevant contributions. A succint description of such contributions is made. Finally, some hints on perspectives for the further development of preclinical and clinical pharmacology in Spain, are offered.


Asunto(s)
Farmacología Clínica , Farmacología , Humanos , España , Europa (Continente) , Farmacogenética
3.
Cell Calcium ; 123: 102928, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39003871

RESUMEN

As the uncontrolled entry of calcium ions (Ca2+) through plasmalemmal calcium channels is a cell death trigger, the conjecture is here raised that mitigating such an excess of Ca2+ entry should rescue from death the vulnerable neurons in neurodegenerative diseases (NDDs). However, this supposition has failed in some clinical trials (CTs). Thus, a recent CT tested whether isradipine, a blocker of the Cav1 subtype of voltage-operated calcium channels (VOCCs), exerted a benefit in patients with Parkinson's disease (PD); however, outcomes were negative. This is one more of the hundreds of CTs done under the principle of one-drug-one-target, that have failed in Alzheimer's disease (AD) and other NDDs during the last three decades. As there are myriad calcium channels to let Ca2+ ions gain the cell cytosol, it seems reasonable to predict that blockade of Ca2+ entry through a single channel may not be capable of preventing the Ca2+ flood of cells by the uncontrolled Ca2+ entry. Furthermore, as Ca2+ signaling is involved in the regulation of myriad functions in different cell types, it seems also reasonable to guess that a therapy should be more efficient by targeting different cells with various drugs. Here, we propose to mitigate Ca2+ entry by the simultaneous partial blockade of three quite different subtypes of plasmalemmal calcium channels that is, the Cav1 subtype of VOCCs, the Orai1 store-operated calcium channel (SOCC), and the purinergic P2X7 calcium channel. All three channels are expressed in both microglia and neurons. Thus, by targeting the three channels with a combination of three drug blockers we expect favorable changes in some of the pathogenic features of NDDs, namely (i) to mitigate Ca2+ entry into microglia; (ii) to decrease the Ca2+-dependent microglia activation; (iii) to decrease the sustained neuroinflammation; (iv) to decrease the uncontrolled Ca2+ entry into neurons; (v) to rescue vulnerable neurons from death; and (vi) to delay disease progression. In this review we discuss the arguments underlying our triad hypothesis in the sense that the combination of three repositioned medicines targeting Cav1, Orai1, and P2X7 calcium channels could boost neuroprotection and delay the progression of AD and other NDDs.

4.
Biomed Phys Eng Express ; 10(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38198732

RESUMEN

SARS-CoV-2 infection has a wide range of clinical manifestations making its diagnosis difficult, which is an important problem to solve. We evaluated heart rate data extracted from the Stanford University database. The data set considers heart rate and step records of 118 patients, where 90 correspond to healthy individuals and 28 patients with COVID. Each daily record was divided into 5-minute segments, providing 288 data per patient. The date of symptom onset was considered as a reference point to extract subsets of data whose variability was considerable, such as 30 days before the date and 30 days after it. Each of the 60 segments of 288 data per patient was treated using Permutation Entropy, Approximate Entropy, Spectral Entropy and Singular Value Decomposition Entropy. The average of the data from each group was used to construct the circadian profiles which were analyzed using the Mann-Whitney-Wilcoxon test, determining the most relevant 5-minute segments, whose p-value was less than 0.05. In this way, the Spectral Entropy was discarded as it did not show any significantly different segment. The efficiency of the method was reflected in the performance of a logistic model for binary classification proposed in this work, which reflected an accuracy of 94.12% in the PE case, 88% in the ApEn case and 94% in the SVDE case. The proposed analysis turns out to be highly efficient when detecting significant segments that allow improving the classification tasks carried out by Machine Learning models, which provides a basis for the study of statistics such as entropy to delimit databases and improve the performance of classifier models.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Entropía , Medición de Riesgo
5.
Rev. bras. farmacogn ; 22(1): 1-12, Jan.-Feb. 2012. graf
Artículo en Inglés | LILACS | ID: lil-607597

RESUMEN

Plant extracts of Eugenia punicifolia (Kunth) DC., Myrtaceae, are used in Amazon region of Brazil to treat diarrhea and stomach disturbances, and as hypoglycemic medicine. We have recently shown that an aqueous extract of E. punicifolia augmented cholinergic neurotransmission in a rat phrenic nerve-diaphragm preparation. In this study, we investigated the effects of an E. punicifolia dichloromethane extract (EPEX) in a neuronal model of cholinergic neurotransmission, the bovine adrenal chromaffin cell. EPEX augmented the release of catecholamine triggered by acetylcholine (ACh) pulses but did not enhance ACh-evoked inward currents, which were inhibited by 30 percent. Since EPEX did not cause a blockade of acetylcholinesterase or butyrylcholinesterase, it seems that EPEX is not directly activating the cholinergic system. EPEX also augmented K+-elicited secretion without enhancing the whole-cell inward calcium current. This novel and potent effect of EPEX in enhancing exocytosis might help to identify the active component responsible for augmenting exocytosis. When elucidated, the molecular structure of this active principle could serve as a template to synthesise novel compounds to regulate the exocytotic release of neurotransmitters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA